深入解析 ConcurrentHashMap:从 JDK 1.7 到 JDK 1.8

✨探索Java基础 ConcurrentHashMap✨

引言

ConcurrentHashMap 是 Java 中一个线程安全的高效 Map 集合。它在多线程环境下提供了高性能的数据访问和修改能力。本文将详细探讨 ConcurrentHashMap 在 JDK 1.7 和 JDK 1.8 中的不同实现方式,以及它们各自的优缺点。

基本概念

ConcurrentHashMap 是一个线程安全的哈希表实现,适用于高并发场景。它的设计目标是在保证线程安全的同时,提供尽可能高的性能。

JDK 1.7 版本的 ConcurrentHashMap

接下来看一张图片:

数据结构

在 JDK 1.7 中,ConcurrentHashMap 使用 分段锁(Segment) 的设计。每个 Segment 是一个独立的小哈希表,并且每个 Segment 都有自己的锁。这种设计允许多个线程同时访问不同的 Segment,从而提高并发性能。

  • Segment 数组:默认是 16 个 Segment。
  • HashEntry 数组:每个 Segment 内部有一个 HashEntry 数组,用于存储具体的元素。
  • 链表:如果发生哈希冲突,会使用单向链表来存储冲突的节点。

存储流程

  1. 计算 key 的哈希值:通过 key 的哈希值确定 Segment 数组的下标。
  2. 获取 Segment 锁:对对应的 Segment 进行加锁。
  3. 确定 HashEntry 数组下标:再次通过哈希值确定 HashEntry 数组中的下标。
  4. 存储数据:将数据存入 HashEntry 数组中,如果发生冲突,则挂载到单向链表上。
  5. 附图:

扩容机制

  • 基于 Segment:每个 Segment 维护自己的负载因子,当某个 Segment 中的元素数量超过阈值时,该 Segment 会单独进行扩容。
  • 局部扩容:只影响当前 Segment,不会影响其他 Segment。

size 方法

  • 尝试三次不加锁获取 sum:如果三次总数相同,直接返回;否则,加锁计算总和。

JDK 1.8 版本的 ConcurrentHashMap

看图:

数据结构

在 JDK 1.8 中,ConcurrentHashMap 取消了 Segment 设计,采用了与 HashMap 类似的数据结构:数组 + 链表/红黑树。

  • Node 数组:类似于 HashMap 的数组。
  • 链表/红黑树:当链表长度超过一定阈值时,会转换为红黑树以提高查询效率。

存储流程

  1. 计算 key 的哈希值:通过 key 的哈希值确定 Node 数组的下标。
  2. CAS 添加新节点:使用 CAS 操作尝试添加新节点。
  3. 锁定首节点:如果 CAS 失败或需要更新链表/红黑树,使用 synchronized 锁定首节点。
  4. 存储数据:将数据存入链表或红黑树中。

扩容机制

  • 全局扩容:当整个 ConcurrentHashMap 的元素数量超过阈值时,整个数组会进行扩容。
  • 渐进式扩容:多个线程共同参与扩容操作,逐步迁移旧数据到新数组中,降低扩容时的性能开销。

size 方法

  • 类似 LongAdder 的思想:使用 baseCount 和 counterCells 数组来维护计数。
  • 减少竞争:通过分散计数到多个 counterCell 来减少对单个变量的竞争压力。

代码示例

JDK 1.7 版本

// Segment 类
static final class Segment<K,V> extends ReentrantLock implements Serializable {private final int threshold;transient volatile HashEntry<K,V>[] table;transient int count;transient int modCount;// 构造函数Segment(int initialCapacity, float loadFactor) {this.threshold = (int) (initialCapacity * loadFactor);setTable(HashEntry.<K,V>newArray(initialCapacity));}// put 方法V put(K key, int hash, V value, boolean onlyIfAbsent) {lock(); // 加锁try {int c = count;if (c++ > threshold) // 需要扩容rehash();HashEntry<K,V>[] tab = table;int index = hash & (tab.length - 1);HashEntry<K,V> first = tab[index];HashEntry<K,V> e = first;while (e != null && (e.hash != hash || !key.equals(e.key)))e = e.next;V oldValue;if (e != null) {oldValue = e.value;if (!onlyIfAbsent)e.value = value;} else {oldValue = null;++modCount;tab[index] = new HashEntry<>(key, hash, first, value);}return oldValue;} finally {unlock(); // 解锁}}
}

JDK 1.8 版本

// Node 类
static class Node<K,V> implements Map.Entry<K,V> {final int hash;final K key;volatile V val;volatile Node<K,V> next;Node(int hash, K key, V val, Node<K,V> next) {this.hash = hash;this.key = key;this.val = val;this.next = next;}public final K getKey()       { return key; }public final V getValue()     { return val; }public final String toString() { return key + "=" + val; }
}// putVal 方法
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length;if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null);else {Node<K,V> e; K k;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))e = p;else if (p instanceof TreeNode)e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);else {for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);if (binCount >= TREEIFY_THRESHOLD - 1) // 转换为红黑树treeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;}}if (e != null) { // 存在键冲突V oldValue = e.val;if (!onlyIfAbsent || oldValue == null)e.val = value;afterNodeAccess(e);return oldValue;}}++modCount;if (++size > threshold)resize();afterNodeInsertion(evict);return null;
}

总结

  • JDK 1.7:使用分段锁(Segment)和 ReentrantLock,每个 Segment 是一个独立的小哈希表,适合中等并发场景。
  • JDK 1.8:采用 CAS 操作和 synchronized 锁定链表或红黑树的首节点,提供了更细粒度的锁,适合高并发场景。

通过这些改进,JDK 1.8 版本的 ConcurrentHashMap 在性能和并发控制方面有了显著的提升。

觉得有用的话可以点点赞 (*/ω\*),支持一下。

如果愿意的话关注一下。会对你有更多的帮助。

每天都会不定时更新哦  >人<  。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1552882.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

(笔记)第三期书生·浦语大模型实战营(十一卷王场)--书生入门岛通关第2关Python 基础知识

学员闯关手册&#xff1a;https://aicarrier.feishu.cn/wiki/ZcgkwqteZi9s4ZkYr0Gcayg1n1g?open_in_browsertrue 课程视频&#xff1a;https://www.bilibili.com/video/BV1mS421X7h4/ 课程文档&#xff1a;https://github.com/InternLM/Tutorial/tree/camp3/docs/L0/Python 关…

如何使用ssm实现基于JSP的高校听课评价系统

TOC ssm753基于JSP的高校听课评价系统jsp 绪论 1.1 研究背景 现在大家正处于互联网加的时代&#xff0c;这个时代它就是一个信息内容无比丰富&#xff0c;信息处理与管理变得越加高效的网络化的时代&#xff0c;这个时代让大家的生活不仅变得更加地便利化&#xff0c;也让时…

【LeetCode: 1870. 准时到达的列车最小时速 | 二分】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

各种饺子的做法

【羊肉馅水饺】 材料:羊肉1000克、洋葱2个、香油3汤匙、盐适量、姜2片、料酒1汤匙、白胡椒粉、十三香1茶匙、 做法&#xff1a; 1.把羊肉剁成肉馅&#xff0c;羊肉选用带一些肥肉的&#xff0c;味道比较香&#xff0c;如果羊肉比较瘦&#xff0c;可以放一些猪的肥肉一起剁成馅…

电商店铺多开自动回复软件

在电商平台上开设多个店铺&#xff0c;即店铺多开&#xff0c;是一种扩展业务和增加销售额的策略。然而&#xff0c;店铺多开需要谨慎规划和执行&#xff0c;以避免违反平台规定和管理上的混乱。以下是如何实现店铺多开的详细步骤和注意事项。 1. 确定多开目标 在决定多开店铺…

4个顶级的大模型推理引擎

LLM 在文本生成应用中表现出色&#xff0c;例如具有高理解度和流畅度的聊天和代码完成模型。然而&#xff0c;它们的庞大规模也给推理带来了挑战。基本推理速度很慢&#xff0c;因为 LLM 会逐个生成文本标记&#xff0c;需要对每个下一个标记进行重复调用。随着输入序列的增长&…

【CKA】七、七层负载-Ingress应用

7、七层负载-Ingress应用 1. 考题内容&#xff1a; 2. 答题思路&#xff1a; 1、要先查到集群中使用的ingressclass 2、编写yaml 我考的题只是把 hi 服务换成了 hello&#xff0c;其他都一模一样 3. 官网地址&#xff1a; https://kubernetes.io/zh-cn/docs/concepts/serv…

Pytorch实现RNN实验

一、实验要求 用 Pytorch 模块的 RNN 实现生成唐诗。要求给定一个字能够生成一首唐诗。 二、实验目的 理解循环神经网络&#xff08;RNN&#xff09;的基本原理&#xff1a;通过构建一个基于RNN的诗歌生成模型&#xff0c;学会RNN是如何处理序列数据的&#xff0c;以及如何在…

LabVIEW提高开发效率技巧----快速实现原型和测试

在LabVIEW开发中&#xff0c;DAQ助手&#xff08;DAQ Assistant&#xff09;和Express VI为快速构建原型和测试功能提供了极大的便利&#xff0c;特别适合于简单系统的开发和早期验证阶段。 DAQ助手&#xff1a;是一种可视化配置工具&#xff0c;通过图形界面轻松设置和管理数据…

HISTCITE分析进阶

不可否认histcite是一个很好的文献分析的工具,他能很好的找到最重要的那几篇文章,同时也能找到研究的发文趋势、研究机构和著名的研究学者等。但是它是一个很老的软件,因而很多东西都没能跟上下载的分析。我在使用过程中,尝试做一些改变使其更好用,同时也做一些记录。 1.…

C语言数组和指针笔试题(四)

目录 二维数组例题一例题二例题三例题四例题五例题六例题七例题八例题九例题十例题十一 结果 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 &#x1f412;&#x1f412;&#x1f412;个人主页 &#x1f978;&#x1f978;&#x1f978;C语言 &#x1f43f;️…

vulnhub-Matrix 1靶机

vulnhub&#xff1a;https://www.vulnhub.com/entry/matrix-1,259/ 导入靶机&#xff0c;扫描IP 靶机在192.168.81.6&#xff0c;扫描端口 存在三个端口&#xff0c;有两个都是http服务&#xff0c;访问 80端口的网页没什么信息&#xff0c;31337的网页元素里有注释 ZWNobyAi…

加密与安全_HTOP 一次性密码生成算法

文章目录 HOTP 的基础原理HOTP 的工作流程HOTP 的应用场景HOTP 的安全性安全性增强措施Code生成HOTP可配置项校验HOTP可拓展功能计数器&#xff08;counter&#xff09;计数器在客户端和服务端的作用计数器的同步机制客户端和服务端中的计数器表现服务端如何处理计数器不同步计…

dubbo微服务

一.启动nacos和redis 1.虚拟机查看是否开启nacos和redis docker ps2.查看是否安装nacos和redis docker ps -a3.启动nacos和redis docker start nacos docker start redis-6379 docker ps二.创建三个idea的maven项目 1.第一个项目dubboapidemo 2.1.1向pom.xml里添加依赖 …

MES(软件)系统是什么?MES系统为何如此重要呢?

一、MES系统的定义与功能 MES系统是一套面向制造企业车间执行层的生产信息化管理系统&#xff0c;它涵盖了多种功能模块&#xff0c;包括但不限于&#xff1a; 订单管理&#xff1a;处理客户订单&#xff0c;确保生产需求与市场需求相匹配。生产调度&#xff1a;根据订单和生…

快乐数——双指针算法

题目链接 快乐数https://leetcode.cn/problems/happy-number/description/ 题目要求 样例 算法原理 根据上述的题目分析&#xff0c;我们可以知道&#xff0c;当重复执行 x 的时候&#xff0c;数据会陷入到⼀个”循环“之中。 而”快慢指针“有⼀个特性&#xff0c;就是在⼀个…

英文网站建设意义

英文网站建设是一项至关重要的任务&#xff0c;对于企业和个人而言都具有巨大的战略意义。一个精心设计的英文网站不仅可以提升品牌形象&#xff0c;还能够为用户提供良好的体验&#xff0c;从而增加流量、促进业务发展。在进行英文网站建设时&#xff0c;有几个关键方面需要特…

[MAUI]数据绑定和MVVM:MVVM的属性验证

一、MVVM的属性验证案例 Toolkit.Mvvm框架中的ObservableValidator类,提供了属性验证功能,可以使用我们熟悉的验证特性对属性的值进行验证,并将错误属性提取和反馈给UI层。以下案例实现对UI层的姓名和年龄两个输入框,进行表单提交验证。实现效果如下所示 View<ContentP…

五、Drf权限组件

五、权限组件 权限组件=[权限类,权限类,权限类…] 执行所有权限类的has_permission方法,通过返回True,不通过返回False 默认情况下,所有的权限类都通过,才返回True 5.1简单应用权限组件 #ext.per class MyPermission1(BasePermission):def has_permission(self, requ…

初识算法 · 双指针(1)

目录 前言&#xff1a; 双指针算法 题目一&#xff1a; ​编辑 题目二: 前言&#xff1a; 本文作为算法部分的第一篇文章&#xff0c;自然是少不了简单叭叭两句&#xff0c;对于算法部分&#xff0c;多刷是少不了&#xff0c;我们刷题从暴力过度到算法解法&#xff0c;自…