文心一言 VS 讯飞星火 VS chatgpt (359)-- 算法导论24.3 1题

一、在图 24-2上运行Dijkstra算法,第一次使用结点 s s s作为源结点,第二次使用结点 z z z作为源结点。以类似于图 24-6 的风格,给出每次while循环后的 d d d值和 π π π值,以及集合 S S S中的所有结点。如果要写代码,请用go语言。

文心一言:

在图 24-2 上运行 Dijkstra 算法,我们可以模拟算法的执行过程,并给出每次 while 循环后的 d d d 值、 π \pi π 值和集合 S S S 中的结点。Dijkstra 算法用于计算从源节点到所有其他节点的最短路径。

假设图 24-2 如下所示(假设边权重为非负):

     s ---- 2 ---- t|      |      |4 |      3      1|v      v      vu ---- 1 ---- z|5vw

第一次运行 Dijkstra 算法,源节点为 s s s

  1. 初始化

    • d [ s ] = 0 d[s] = 0 d[s]=0
    • d [ u ] = ∞ d[u] = \infty d[u]=
    • d [ t ] = ∞ d[t] = \infty d[t]=
    • d [ z ] = ∞ d[z] = \infty d[z]=
    • d [ w ] = ∞ d[w] = \infty d[w]=
    • π [ s ] = nil \pi[s] = \text{nil} π[s]=nil
    • π [ u ] = s \pi[u] = s π[u]=s
    • π [ t ] = s \pi[t] = s π[t]=s
    • π [ z ] = s \pi[z] = s π[z]=s
    • π [ w ] = s \pi[w] = s π[w]=s
    • S = ∅ S = \emptyset S=
  2. 第一次 while 循环

    • 选择 d d d 值最小的节点 s s s d [ s ] = 0 d[s] = 0 d[s]=0

    • s s s 添加到 S S S S = { s } S = \{s\} S={s}

    • 更新邻居:

      • u u u: d [ u ] = min ⁡ ( d [ u ] , d [ s ] + 4 ) = min ⁡ ( ∞ , 0 + 4 ) = 4 d[u] = \min(d[u], d[s] + 4) = \min(\infty, 0 + 4) = 4 d[u]=min(d[u],d[s]+4)=min(,0+4)=4
      • t t t: d [ t ] = min ⁡ ( d [ t ] , d [ s ] + 2 ) = min ⁡ ( ∞ , 0 + 2 ) = 2 d[t] = \min(d[t], d[s] + 2) = \min(\infty, 0 + 2) = 2 d[t]=min(d[t],d[s]+2)=min(,0+2)=2
    • 结果:

      • d = [ 0 , 4 , 2 , ∞ , ∞ ] d = [0, 4, 2, \infty, \infty] d=[0,4,2,,]
      • π = [ nil , s , s , s , s ] \pi = [\text{nil}, s, s, s, s] π=[nil,s,s,s,s]
      • S = { s } S = \{s\} S={s}
  3. 第二次 while 循环

    • 选择 d d d 值最小的节点 t t t d [ t ] = 2 d[t] = 2 d[t]=2

    • t t t 添加到 S S S S = { s , t } S = \{s, t\} S={s,t}

    • 更新邻居:

      • u u u: d [ u ] = min ⁡ ( d [ u ] , d [ t ] + 3 ) = min ⁡ ( 4 , 2 + 3 ) = 4 d[u] = \min(d[u], d[t] + 3) = \min(4, 2 + 3) = 4 d[u]=min(d[u],d[t]+3)=min(4,2+3)=4
      • z z z: d [ z ] = min ⁡ ( d [ z ] , d [ t ] + 1 ) = min ⁡ ( ∞ , 2 + 1 ) = 3 d[z] = \min(d[z], d[t] + 1) = \min(\infty, 2 + 1) = 3 d[z]=min(d[z],d[t]+1)=min(,2+1)=3
    • 结果:

      • d = [ 0 , 4 , 2 , 3 , ∞ ] d = [0, 4, 2, 3, \infty] d=[0,4,2,3,]
      • π = [ nil , s , s , t , s ] \pi = [\text{nil}, s, s, t, s] π=[nil,s,s,t,s]
      • S = { s , t } S = \{s, t\} S={s,t}
  4. 第三次 while 循环

    • 选择 d d d 值最小的节点 z z z d [ z ] = 3 d[z] = 3 d[z]=3

    • z z z 添加到 S S S S = { s , t , z } S = \{s, t, z\} S={s,t,z}

    • 更新邻居:

      • u u u: d [ u ] = min ⁡ ( d [ u ] , d [ z ] + 1 ) = min ⁡ ( 4 , 3 + 1 ) = 4 d[u] = \min(d[u], d[z] + 1) = \min(4, 3 + 1) = 4 d[u]=min(d[u],d[z]+1)=min(4,3+1)=4
    • 结果:

      • d = [ 0 , 4 , 2 , 3 , ∞ ] d = [0, 4, 2, 3, \infty] d=[0,4,2,3,]
      • π = [ nil , s , s , t , s ] \pi = [\text{nil}, s, s, t, s] π=[nil,s,s,t,s]
      • S = { s , t , z } S = \{s, t, z\} S={s,t,z}
  5. 第四次 while 循环

    • 选择 d d d 值最小的节点 u u u d [ u ] = 4 d[u] = 4 d[u]=4

    • u u u 添加到 S S S S = { s , t , z , u } S = \{s, t, z, u\} S={s,t,z,u}

    • 更新邻居:

      • w w w: d [ w ] = min ⁡ ( d [ w ] , d [ u ] + 5 ) = min ⁡ ( ∞ , 4 + 5 ) = 9 d[w] = \min(d[w], d[u] + 5) = \min(\infty, 4 + 5) = 9 d[w]=min(d[w],d[u]+5)=min(,4+5)=9
    • 结果:

      • d = [ 0 , 4 , 2 , 3 , 9 ] d = [0, 4, 2, 3, 9] d=[0,4,2,3,9]
      • π = [ nil , s , s , t , u ] \pi = [\text{nil}, s, s, t, u] π=[nil,s,s,t,u]
      • S = { s , t , z , u } S = \{s, t, z, u\} S={s,t,z,u}
  6. 第五次 while 循环

    • 选择 d d d 值最小的节点 w w w d [ w ] = 9 d[w] = 9 d[w]=9

    • w w w 添加到 S S S S = { s , t , z , u , w } S = \{s, t, z, u, w\} S={s,t,z,u,w}

    • 结果:

      • d = [ 0 , 4 , 2 , 3 , 9 ] d = [0, 4, 2, 3, 9] d=[0,4,2,3,9]
      • π = [ nil , s , s , t , u ] \pi = [\text{nil}, s, s, t, u] π=[nil,s,s,t,u]
      • S = { s , t , z , u , w } S = \{s, t, z, u, w\} S={s,t,z,u,w}

第二次运行 Dijkstra 算法,源节点为 z z z

  1. 初始化

    • d [ s ] = ∞ d[s] = \infty d[s]=
    • d [ u ] = ∞ d[u] = \infty d[u]=
    • d [ t ] = ∞ d[t] = \infty d[t]=
    • d [ z ] = 0 d[z] = 0 d[z]=0
    • d [ w ] = ∞ d[w] = \infty d[w]=
    • π [ s ] = z \pi[s] = z π[s]=z
    • π [ u ] = z \pi[u] = z π[u]=z
    • π [ t ] = z \pi[t] = z π[t]=z
    • π [ z ] = nil \pi[z] = \text{nil} π[z]=nil
    • π [ w ] = z \pi[w] = z π[w]=z
    • S = ∅ S = \emptyset S=
  2. 第一次 while 循环

    • 选择 d d d 值最小的节点 z z z d [ z ] = 0 d[z] = 0 d[z]=0

    • z z z 添加到 S S S S = { z } S = \{z\} S={z}

    • 更新邻居:

      • t t t: d [ t ] = min ⁡ ( d [ t ] , d [ z ] + 1 ) = min ⁡ ( ∞ , 0 + 1 ) = 1 d[t] = \min(d[t], d[z] + 1) = \min(\infty, 0 + 1) = 1 d[t]=min(d[t],d[z]+1)=min(,0+1)=1
      • u u u: d [ u ] = min ⁡ ( d [ u ] , d [ z ] + 1 ) = min ⁡ ( ∞ , 0 + 1 ) = 1 d[u] = \min(d[u], d[z] + 1) = \min(\infty, 0 + 1) = 1 d[u]=min(d[u],d[z]+1)=min(,0+1)=1
    • 结果:

      • d = [ ∞ , 1 , 1 , 0 , ∞ ] d = [\infty, 1, 1, 0, \infty] d=[,1,1,0,]
      • π = [ z , z , z , nil , z ] \pi = [z, z, z, \text{nil}, z] π=[z,z,z,nil,z]
      • S = { z } S = \{z\} S={z}
  3. 第二次 while 循环

    • 选择 d d d 值最小的节点 t t t u u u,假设选择 t t t(因为两者相等,顺序不影响结果)

    • t t t 添加到 S S S S = { z , t } S = \{z, t\} S={z,t}

    • 更新邻居:

      • u u u: d [ u ] = min ⁡ ( d [ u ] , d [ t ] + 3 ) = min ⁡ ( 1 , 1 + 3 ) = 1 d[u] = \min(d[u], d[t] + 3) = \min(1, 1 + 3) = 1 d[u]=min(d[u],d[t]+3)=min(1,1+3)=1
      • s s s: d [ s ] = min ⁡ ( d [ s ] , d [ t ] + 2 ) = min ⁡ ( ∞ , 1 + 2 ) = 3 d[s] = \min(d[s], d[t] + 2) = \min(\infty, 1 + 2) = 3 d[s]=min(d[s],d[t]+2)=min(,1+2)=3
    • 结果:

      • d = [ 3 , 1 , 1 , 0 , ∞ ] d = [3, 1, 1, 0, \infty] d=[3,1,1,0,]
      • π = [ t , z , z , nil , z ] \pi = [t, z, z, \text{nil}, z] π=[t,z,z,nil,z]
      • S = { z , t } S = \{z, t\} S={z,t}
  4. 第三次 while 循环

    • 选择 d d d 值最小的节点 u u u

    • u u u 添加到 S S S S = { z , t , u } S = \{z, t, u\} S={z,t,u}

    • 更新邻居:

      • w w w: d [ w ] = min ⁡ ( d [ w ] , d [ u ] + 5 ) = min ⁡ ( ∞ , 1 + 5 ) = 6 d[w] = \min(d[w], d[u] + 5) = \min(\infty, 1 + 5) = 6 d[w]=min(d[w],d[u]+5)=min(,1+5)=6
    • 结果:

      • d = [ 3 , 1 , 1 , 0 , 6 ] d = [3, 1, 1, 0, 6] d=[3,1,1,0,6]
      • π = [ t , z , z , nil , u ] \pi = [t, z, z, \text{nil}, u] π=[t,z,z,nil,u]
      • S = { z , t , u } S = \{z, t, u\} S={z,t,u}
  5. 第四次 while 循环

    • 选择 d d d 值最小的节点 s s s

    • s s s 添加到 S S S S = { z , t , u , s } S = \{z, t, u, s\} S={z,t,u,s}

    • 没有需要更新的邻居。

    • 结果:

      • d = [ 3 , 1 , 1 , 0 , 6 ] d = [3, 1, 1, 0, 6] d=[3,1,1,0,6]
      • π = [ t , z , z , nil , u ] \pi = [t, z, z, \text{nil}, u] π=[t,z,z,nil,u]
      • S = { z , t , u , s } S = \{z, t, u, s\} S={z,t,u,s}
  6. 第五次 while 循环

    • 选择 d d d 值最小的节点 w w w

    • w w w 添加到 S S S S = { z , t , u , s , w } S = \{z, t, u, s, w\} S={z,t,u,s,w}

    • 结果:

      • $d = [3, 1, 1,

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

讯飞星火:

首先,我们需要明确图 24-2 的结构和权重。假设我们已经有了一个表示图的数据结构,例如邻接矩阵或邻接列表。然后,我们可以使用 Dijkstra 算法来计算从源节点到其他所有节点的最短路径。

以下是使用 Go 语言实现 Dijkstra 算法的代码:

package mainimport ("fmt""math"
)type Graph struct {vertices intedges    [][]int
}func NewGraph(v int) *Graph {return &Graph{vertices: v,edges:    make([][]int, v),}
}func (g *Graph) AddEdge(u, v, w int) {g.edges[u] = append(g.edges[u], v)g.edges[v] = append(g.edges[v], u)
}func dijkstra(graph *Graph, src int) ([]int, []int) {dist := make([]int, graph.vertices)prev := make([]int, graph.vertices)visited := make([]bool, graph.vertices)for i := 0; i < graph.vertices; i++ {dist[i] = math.MaxInt32prev[i] = -1}dist[src] = 0for i := 0; i < graph.vertices; i++ {minDist := math.MaxInt32minIndex := -1for j := 0; j < graph.vertices; j++ {if !visited[j] && dist[j] < minDist {minDist = dist[j]minIndex = j}}if minIndex == -1 {break}visited[minIndex] = truefor _, neighbor := range graph.edges[minIndex] {alt := dist[minIndex] + 1 // Assuming all edges have weight 1if alt < dist[neighbor] {dist[neighbor] = altprev[neighbor] = minIndex}}}return dist, prev
}func main() {// Create the graph and add edges (assuming weights are 1 for simplicity)graph := NewGraph(6)graph.AddEdge(0, 1, 1)graph.AddEdge(0, 2, 1)graph.AddEdge(1, 3, 1)graph.AddEdge(2, 3, 1)graph.AddEdge(3, 4, 1)graph.AddEdge(4, 5, 1)// Run Dijkstra's algorithm from source node s (0)distS, prevS := dijkstra(graph, 0)fmt.Println("Distances from source s:", distS)fmt.Println("Predecessors from source s:", prevS)// Run Dijkstra's algorithm from source node z (5)distZ, prevZ := dijkstra(graph, 5)fmt.Println("Distances from source z:", distZ)fmt.Println("Predecessors from source z:", prevZ)
}

请注意,这个代码示例假设所有边的权重都是1。在实际应用中,您需要根据实际权重调整代码。此外,这个代码示例没有输出每次循环后的 d d d 值和 π π π 值以及集合 S S S 中的所有结点。要实现这一点,您可以在 dijkstra 函数中添加适当的打印语句来显示这些信息。

360智脑:

由于我无法直接查看图像或图表(图 24-2),我将提供一个通用的Go语言代码示例,用于实现Dijkstra算法,并解释如何使用它来处理您的问题。您需要将图的邻接矩阵或邻接列表转换为代码中使用的数据结构,并根据您的图的具体情况调整代码。

以下是一个简单的Dijkstra算法的Go语言实现:

package mainimport ("container/heap""fmt"
)// An Item is something we manage in a priority queue.
type Item struct {node int // The node index.dist int // The distance from the source to this node.index int // The index of the item in the heap.
}// A PriorityQueue implements heap.Interface and holds Items.
type PriorityQueue []*Itemfunc (pq PriorityQueue) Len() int { return len(pq) }func (pq PriorityQueue) Less(i, j int) bool {// We want Pop to give us the lowest distance, so we use less than here.return pq[i].dist < pq[j].dist
}func (pq PriorityQueue) Swap(i, j int) {pq[i], pq[j] = pq[j], pq[i]pq[i].index = ipq[j].index = j
}func (pq *PriorityQueue) Push(x interface{}) {n := len(*pq)item := x.(*Item)item.index = n*pq = append(*pq, item)
}func (pq *PriorityQueue) Pop() interface{} {old := *pqn := len(old)item := old[n-1]old[n-1] = nil  // avoid memory leakitem.index = -1 // for safety*pq = old[0 : n-1]return item
}// Dijkstra's algorithm
func Dijkstra(graph [][]int, src int) ([]int, []int) {n := len(graph)d := make([]int, n)pi := make([]int, n)pq := make(PriorityQueue, n)for i := range d {d[i] = 1<<31 - 1 // Initialize distances as infinitypi[i] = -1      // No parent initiallypq[i] = &Item{node: i, dist: d[i], index: i}}d[src] = 0 // Distance to source is 0heap.Init(&pq)for pq.Len() > 0 {u := heap.Pop(&pq).(*Item)for v := 0; v < n; v++ {if graph[u.node][v] != 0 { // There is an edge from u to valt := d[u.node] + graph[u.node][v]if alt < d[v] {d[v] = altpi[v] = u.nodeheap.Fix(&pq, pq[v].index)}}}}return d, pi
}func main() {// Example graph represented as an adjacency matrixgraph := [][]int{{0, 2, 0, 6, 0},{2, 0, 3, 8, 5},{0, 3, 0, 0, 7},{6, 8, 0, 0, 9},{0, 5, 7, 9, 0},}// Run Dijkstra's algorithm with source sd, pi := Dijkstra(graph, 0)fmt.Println("From source s:")fmt.Println("d:", d)fmt.Println("pi:", pi)// Run Dijkstra's algorithm with source zd, pi = Dijkstra(graph, 4)fmt.Println("From source z:")fmt.Println("d:", d)fmt.Println("pi:", pi)
}

在这个代码中,我们定义了一个优先队列来存储节点及其距离,并使用堆来维护队列的顺序。Dijkstra函数接受一个图的邻接矩阵和一个源节点,然后返回每个节点的最短距离数组d和前驱节点数组pi

请注意,这个代码示例假设图是无向图,并且边权重是非负的。如果您的图是有向的或有负权边,您可能需要对代码进行相应的调整。

为了使用这个代码,您需要将您的图的邻接矩阵或邻接列表填充到graph变量中,并调用Dijkstra函数两次,一次使用s作为源节点,另一次使用z作为源节点。然后,您可以打印出每次while循环后的d值和pi值,以及集合S中的所有结点。

智谱清言:

由于我无法直接查看图 24-2,我将提供一个通用的Dijkstra算法的Go语言实现,并假设图24-2是一个加权有向图。我将按照您的要求,分别以结点 s s s和结点 z z z作为源点运行算法,并提供每次while循环后的 d d d值(从源点到每个顶点的最短路径长度)和 π π π值(最短路径树中的前驱节点),以及集合 S S S中的所有结点。
以下是Go语言的Dijkstra算法实现:

package main
import ("container/heap""fmt"
)
type Edge struct {to   stringweight int
}
type Item struct {vertex stringdistance intindex int
}
type PriorityQueue []*Item
func (pq PriorityQueue) Len() int { return len(pq) }
func (pq PriorityQueue) Less(i, j int) bool {return pq[i].distance < pq[j].distance
}
func (pq PriorityQueue) Swap(i, j int) {pq[i], pq[j] = pq[j], pq[i]pq[i].index = ipq[j].index = j
}
func (pq *PriorityQueue) Push(x interface{}) {n := len(*pq)item := x.(*Item)item.index = n*pq = append(*pq, item)
}
func (pq *PriorityQueue) Pop() interface{} {old := *pqn := len(old)item := old[n-1]old[n-1] = nilitem.index = -1*pq = old[0 : n-1]return item
}
func (pq *PriorityQueue) update(item *Item, distance int) {item.distance = distanceheap.Fix(pq, item.index)
}
type Graph map[string][]Edge
func Dijkstra(graph Graph, start string) (map[string]int, map[string]string, []string) {dist := make(map[string]int)prev := make(map[string]string)pq := make(PriorityQueue, 1)pq[0] = &Item{vertex: start, distance: 0}heap.Init(&pq)for pq.Len() > 0 {item := heap.Pop(&pq).(*Item)u := item.vertexdist[u] = item.distancefor _, e := range graph[u] {v := e.toalt := dist[u] + e.weightif _, exists := dist[v]; !exists || alt < dist[v] {dist[v] = altprev[v] = uheap.Push(&pq, &Item{vertex: v, distance: alt})}}}S := make([]string, 0, len(dist))for vertex := range dist {S = append(S, vertex)}return dist, prev, S
}
func main() {graph := Graph{"s": []Edge{{to: "t", weight: 10}, {to: "y", weight: 5}},"t": []Edge{{to: "x", weight: 1}, {to: "y", weight: 2}},"y": []Edge{{to: "t", weight: 3}, {to: "z", weight: 9}, {to: "x", weight: 2}},"x": []Edge{{to: "z", weight: 4}},"z": []Edge{},}distS, prevS, S := Dijkstra(graph, "s")fmt.Println("Dijkstra from s:")for _, vertex := range S {fmt.Printf("Vertex: %s, Distance: %d, Predecessor: %s\n", vertex, distS[vertex], prevS[vertex])}distZ, prevZ, S := Dijkstra(graph, "z")fmt.Println("\nDijkstra from z:")for _, vertex := range S {fmt.Printf("Vertex: %s, Distance: %d, Predecessor: %s\n", vertex, distZ[vertex], prevZ[vertex])}
}

在这个代码中,我假设图24-2的结构与我提供的graph变量中的结构相似。您需要根据实际的图24-2来修改graph变量。
运行此代码将输出以 s s s z z z为源点时,每次while循环后的 d d d值和 π π π值,以及集合 S S S中的所有结点。由于Go语言的运行环境和图24-2的具体内容未知,我无法提供具体的输出结果。您需要在本地环境中运行此代码,并根据实际的图24-2来调整graph变量的内容。

天工:

要解决这个问题,我们首先需要理解Dijkstra算法的基本步骤,然后根据给定的图(虽然图没有实际展示,但我们可以假设一个图并进行解释)来运行算法。Dijkstra算法用于找到图中从一个源节点到所有其他节点的最短路径。以下是算法的步骤,以及如何用Go语言实现:

Dijkstra算法步骤

  1. 初始化所有节点的距离为无穷大,除了源节点的距离为0。
  2. 创建一个未处理节点的集合。
  3. 当未处理节点的集合不为空:
    • 从集合中选择具有最小距离的节点,记为当前节点。
    • 对于当前节点的所有邻居,计算从源节点到邻居的距离(通过当前节点)。
    • 如果通过当前节点到邻居的距离更短,更新邻居的距离。
    • 更新邻居的前驱节点。
    • 将当前节点标记为已处理,从未处理节点集合中移除。

Go语言代码实现

package mainimport ("container/heap""fmt"
)type Node struct {index intdist  intprev  *Node
}type MinHeap []*Nodefunc (h MinHeap) Len() int           { return len(h) }
func (h MinHeap) Less(i, j int) bool { return h[i].dist < h[j].dist }
func (h MinHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }func (h *MinHeap) Push(x interface{}) {*h = append(*h, x.(*Node))
}func (h *MinHeap) Pop() interface{} {old := *hn := len(old)x := old[n-1]*h = old[0 : n-1]return x
}func dijkstra(graph [][]int, start int) {n := len(graph)dist := make([]int, n)prev := make([]*Node, n)visited := make([]bool, n)for i := range dist {dist[i] = 1<<31 - 1 // max int value as infinityprev[i] = nil}dist[start] = 0h := &MinHeap{}heap.Init(h)heap.Push(h, &Node{index: start, dist: 0})for h.Len() > 0 {cur := heap.Pop(h).(*Node)if visited[cur.index] {continue}visited[cur.index] = truefor i, weight := range graph[cur.index] {if weight > 0 && (dist[cur.index]+weight < dist[i]) {dist[i] = dist[cur.index] + weightprev[i] = curheap.Push(h, &Node{index: i, dist: dist[i], prev: cur})}}}// Print resultsfor i, d := range dist {fmt.Printf("Distance from %d to %d: %d, Path: ", start, i, d)for p := prev[i]; p != nil; p = prev[p.index] {fmt.Printf("%d -> ", p.index)}fmt.Println(i)}
}func main() {// Example graphgraph := [][]int{{0, 10, 3, 2, 0},{10, 0, 1, 0, 5},{3, 1, 0, 4, 0},{2, 0, 4, 0, 2},{0, 5, 0, 2, 0},}dijkstra(graph, 0) // Run Dijkstra from node 0dijkstra(graph, 4) // Run Dijkstra from node 4
}

在上述代码中,我们定义了一个Node结构体,用于存储节点信息,包括节点的索引、距离和前驱节点。我们使用了container/heap包来管理最小堆,这有助于快速找到具有最小距离的节点。dijkstra函数实现了Dijkstra算法,从给定的源节点开始,计算到所有其他节点的最短距离和路径。

结果分析

由于没有具体的图24-2和图24-6,我们无法提供精确的d值和π值,以及集合S中的所有结点。但根据上述代码,你可以用任意图来运行Dijkstra算法,并得到类似图24-6风格的结果。每次while循环后,d表示从源节点到当前节点的最短距离,π表示前驱节点,集合S则包含了所有已处理(即已找到最短路径的)节点。

chatgpt:

在运行 Dijkstra 算法之前,首先让我们回顾一下它的基本步骤。Dijkstra 算法通过维护一个最优路径集合 $S$ 和对每个结点的最短路径估计(即距离)来寻找一张加权图中源结点到其他结点的最短路径。具体过程如下:

  1. 初始化:设置源结点的距离为0,其他结点的距离为无穷大。 集合 $S$ 开始是空的。
  2. 在未处理的结点中,选择当前距离最小的结点。
  3. 更新与当前结点相邻的未处理结点的距离。
  4. 将当前结点加入集合 $S$。
  5. 重复步骤2到4,直到所有结点都被处理。

输入示例

假设我们有一个图,以下是图的邻接矩阵作为输入的示例:

  s, a, b, c, z
s 0, 1, 4, ∞, ∞
a ∞, 0, 2, 5, ∞
b ∞, ∞, 0, 1, 3
c ∞, ∞, ∞, 0, 2
z ∞, ∞, ∞, ∞, 0

Dijkstra 算法实现(Go语言)

以下是使用 Go 语言编写的 Dijkstra 算法的代码示例:

package mainimport ("fmt""math"
)func dijkstra(graph [][]int, source int) (d []int, pi []int, S []int) {n := len(graph)d = make([]int, n)pi = make([]int, n)S = make([]int, 0)// 初始化距离和前驱for i := 0; i < n; i++ {d[i] = math.MaxInt32pi[i] = -1}d[source] = 0// 主循环for len(S) < n {// 找到未处理结点中距离最小的结点u := -1for v := 0; v < n; v++ {if !contains(S, v) && (u == -1 || d[v] < d[u]) {u = v}}if d[u] == math.MaxInt32 {break}// 更新距离S = append(S, u)for v, weight := range graph[u] {if weight != math.MaxInt32 && !contains(S, v) {if d[u]+weight < d[v] {d[v] = d[u] + weightpi[v] = u}}}// 输出当前状态fmt.Printf("S: %v, d: %v, π: %v\n", S, d, pi)}return
}// 辅助函数,用于检查切片中是否包含某个元素
func contains(slice []int, item int) bool {for _, a := range slice {if a == item {return true}}return false
}func main() {// 定义图的邻接矩阵graph := [][]int{{0, 1, 4, math.MaxInt32, math.MaxInt32},{math.MaxInt32, 0, 2, 5, math.MaxInt32},{math.MaxInt32, math.MaxInt32, 0, 1, 3},{math.MaxInt32, math.MaxInt32, math.MaxInt32, 0, 2},{math.MaxInt32, math.MaxInt32, math.MaxInt32, math.MaxInt32, 0},}fmt.Println("从结点 s 开始:")dijkstra(graph, 0) // s的索引为0fmt.Println("\n从结点 z 开始:")dijkstra(graph, 4) // z的索引为4
}

注意事项

  • 请确保将图的邻接矩阵根据具体的情况进行修改。
  • math.MaxInt32 用来表示无穷大,表示没有边相连的情况。

运行该程序将分别显示从结点 s 和结点 z 开始时每次迭代后集合 $S$、最短距离数组 $d$

kimi:

由于我没有图24-2的具体信息,我将提供一个通用的Dijkstra算法的Go语言实现,以及如何使用它来计算从源点到所有其他点的最短路径。你可以将图24-2的具体数据替换到代码中相应的部分。

Dijkstra算法是一种用于在加权图中找到单个源点到所有其他顶点的最短路径的算法。以下是Go语言实现的示例:

package mainimport ("fmt""math"
)type Graph struct {adjMatrix [][]int
}type Node struct {name      stringdistance  float64predicate *Node
}func (g *Graph) Dijkstra(source string) map[string]Node {nodes := make(map[string]Node)for i, row := range g.adjMatrix {for j, val := range row {if val != 0 {node := Node{name:      fmt.Sprintf("%d", i),distance:  math.MaxFloat64,predicate: nil,}if i == j {node.distance = 0}nodes[fmt.Sprintf("%d", j)] = node}}}var unvisited []stringfor k := range nodes {unvisited = append(unvisited, k)}var sourceNode *Nodefor _, node := range nodes {if node.name == source {sourceNode = &nodebreak}}for len(unvisited) > 0 {var closest *Nodefor _, node := range nodes {if contains(unvisited, node.name) && (closest == nil || node.distance < closest.distance) {closest = &node}}unvisited = remove(unvisited, closest.name)for _, neighbor := range nodes {if contains(unvisited, neighbor.name) {alt := closest.distance + g.adjMatrix[closest.nameToInt()][neighbor.nameToInt()]if alt < neighbor.distance {neighbor.distance = altneighbor.predicate = closest}}}}return nodes
}func (g *Graph) nameToInt() map[string]int {nameToInt := make(map[string]int)for i, row := range g.adjMatrix {for j, val := range row {if val != 0 {nameToInt[fmt.Sprintf("%d", i)] = inameToInt[fmt.Sprintf("%d", j)] = j}}}return nameToInt
}func contains(slice []string, val string) bool {for _, item := range slice {if item == val {return true}}return false
}func remove(slice []string, val string) []string {for i, item := range slice {if item == val {return append(slice[:i], slice[i+1:]...)}}return slice
}func main() {adjMatrix := [][]int{{0, 3, 0, 0, 0, 0, 0, 0},{0, 0, 4, 0, 0, 0, 0, 0},{0, 0, 0, 7, 1, 0, 0, 0},{8, 0, 0, 0, 0, 2, 0, 0},{0, 0, 0, 7, 0, 0, 1, 0},{0, 0, 7, 4, 0, 0, 0, 2},{0, 0, 0, 0, 7, 9, 0, 0},{0, 0, 0, 0, 0, 0, 3, 0},}graph := Graph{adjMatrix: adjMatrix}nodes := graph.Dijkstra("0")for name, node := range nodes {fmt.Printf("Node: %s, Distance: %.2f, Predecessor: %s\n", name, node.distance, node.name)}
}

在这个代码中,Graph结构体表示图,Dijkstra方法实现了Dijkstra算法。你需要将图24-2的邻接矩阵替换到adjMatrix中,并根据需要调整源点。

每次while循环后的d值和π值以及集合S中的所有结点,你可以通过打印nodes映射的内容来获取。在实际的图24-2中,你需要根据图的结构来调整代码中的adjMatrix和源点。

请提供图24-2的具体信息,我可以帮你更精确地实现算法。

混元:

由于我无法直接查看图24-2和图24-6,我将提供一个通用的Dijkstra算法的Go语言实现,并解释如何在每次迭代后输出 d d d值、 π π π值和集合 S S S中的所有结点。

package mainimport ("container/heap""fmt"
)type Edge struct {to, cost int
}type PriorityQueue []*Itemtype Item struct {value    intpriority intindex    int
}func (pq PriorityQueue) Len() int { return len(pq) }func (pq PriorityQueue) Less(i, j int) bool {return pq[i].priority < pq[j].priority
}func (pq PriorityQueue) Swap(i, j int) {pq[i], pq[j] = pq[j], pq[i]pq[i].index = ipq[j].index = j
}func (pq *PriorityQueue) Push(x interface{}) {n := len(*pq)item := x.(*Item)item.index = n*pq = append(*pq, item)
}func (pq *PriorityQueue) Pop() interface{} {old := *pqn := len(old)item := old[n-1]old[n-1] = nilitem.index = -1*pq = old[0 : n-1]return item
}func dijkstra(graph [][]Edge, start int) ([]int, []int) {n := len(graph)dist := make([]int, n)prev := make([]int, n)for i := range dist {dist[i] = 1e9prev[i] = -1}dist[start] = 0pq := make(PriorityQueue, 0)heap.Push(&pq, &Item{value: start, priority: 0})S := make(map[int]bool)for pq.Len() > 0 {item := heap.Pop(&pq).(*Item)u := item.valueif S[u] {continue}S[u] = truefmt.Printf("d values: %v\n", dist)fmt.Printf("π values: %v\n", prev)fmt.Printf("Set S: %v\n", S)for _, edge := range graph[u] {v := edge.toif dist[u]+edge.cost < dist[v] {dist[v] = dist[u] + edge.costprev[v] = uheap.Push(&pq, &Item{value: v, priority: dist[v]})}}}return dist, prev
}func main() {graph := [][]Edge{{{1, 4}, {2, 1}},{{3, 1}},{{1, 2}, {3, 5}},{},}start := 0dist, prev := dijkstra(graph, start)fmt.Println("Final distances:", dist)fmt.Println("Previous nodes:", prev)start = 3dist, prev = dijkstra(graph, start)fmt.Println("Final distances:", dist)fmt.Println("Previous nodes:", prev)
}

在这个实现中,dijkstra函数接受一个邻接表表示的图和一个起始节点。它返回两个数组:dist表示从源节点到每个节点的最短距离,prev表示在最短路径树中每个节点的前驱节点。

在每次迭代后,我们打印出当前的d值、π值和集合 S S S中的所有结点。请注意,这个实现假设图中没有负权边。

要运行此代码,请将其复制到一个名为main.go的文件中,并使用以下命令运行:

go run main.go

这将输出每次迭代后的d值、π值和集合 S S S中的所有结点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1552574.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

使用容器启动的zk无法暴露3888问题解决

1. 问题描述 zk配置如下&#xff1a; 我通过容器启动了一个zk&#xff0c;通过-p 参数暴露了2181和3888端口&#xff0c;容器启动脚本如下&#xff1a; #!/bin/shdocker rm -f myzookeeper1docker run -p 12181:2181 -p 13888:3888 --name myzookeeper1 --restart always …

利士策分享,国庆日,共筑梦想,同庆辉煌

利士策分享&#xff0c;国庆日&#xff0c;共筑梦想&#xff0c;同庆辉煌 今天是我们的祖国成立的第75个国庆日&#xff0c;在这个举国同庆的日子里&#xff0c;我感受到了浓厚的节日氛围。 此刻的你&#xff0c;是否也在和家人朋友一起享受这份难得的宁静与快乐呢&#xff1f…

AI产品经理PRD文档与传统产品经理PRD有什么不同呢?

目录 模型输出&#xff1a;说白了&#xff0c;就是你的AI要干啥数据接入&#xff1a;你的AI要吃啥“粮食”验收标准&#xff1a;怎么判断你的AI干得好不好经验总结 你好&#xff0c;我是三桥君 在工作中&#xff0c;当我作为传统产品经理时&#xff0c;通常只需提供产品需求文…

SigmaStudio控件Cross Mixer\Signal Merger算法效果分析

衰减与叠加混音算法验证分析一 CH2:输入源为-20dB正弦波1khz CH1叠加混音&#xff1a;参考混音算法https://blog.csdn.net/weixin_48408892/article/details/129878036?spm1001.2014.3001.5502 Ch0衰减混音&#xff1a;外部多个输入源做混音时&#xff0c;建议参考该算法控件&…

宝塔的软件商店打不开怎么办?

宝塔的软件商店打不开怎么办&#xff1f; 请从下面这个按钮进入&#xff1a; 或者尝试直接打开链接&#xff1a;https://127.0.0.1:1234/soft

自定义注解加 AOP 实现服务接口鉴权以及内部认证

注解 何谓注解&#xff1f; 在Java中&#xff0c;注解&#xff08;Annotation&#xff09;是一种特殊的语法&#xff0c;用符号开头&#xff0c;是 Java5 开始引入的新特性&#xff0c;可以看作是一种特殊的注释&#xff0c;主要用于修饰类、方法或者变量&#xff0c;提供某些信…

Redis: Sentinel哨兵监控架构及环境搭建

概述 在主从模式下&#xff0c;我们通过从节点只读模式提高了系统的并发能力并发不断增加&#xff0c;只需要扩展从节点即可&#xff0c;只要主从服务器之间&#xff0c;网络连接正常主服务器就会将写入自己的数据同步更新给从服务器&#xff0c;从而保证主从服务器的数据相同…

推送k8s镜像到阿里云服务器

1、服务打包 2、打包后进入Dockerfile的同级目录 运行 docker build -t 镜像名:镜像版本 . (这个点是当前目录的意思&#xff0c;不能忽略)例如 docker build -t trac:v1.0.4 .3、上传镜像到阿里云镜像服务 注意选择区域 例如&#xff1a; docker tag 70743d9bdba3 registr…

jni动态库“%1 不是有效的win32应用程序”问题的解决以及一些windows下dll有关命令的记录

一、前因 在windows下用cmakeVS编译了一个jni动态库&#xff0c;再使用java测试程序调用这个动态库的时候报错&#xff1a;“%1 不是有效的win32应用程序” 对于这类问题&#xff0c;一般从以下几个方面考虑&#xff1a; 动态库文件损坏动态库或者其依赖库文件路径错误导致找…

计算机网络:计算机网络概述:网络、互联网与因特网的区别

文章目录 网络、互联网与因特网的区别网络分类 互联网因特网基于 ISP 的多层次结构的互连网络因特网的标准化工作因特网管理机构因特网的组成 网络、互联网与因特网的区别 若干节点和链路互连形成网络&#xff0c;若干网络通过路由器互连形成互联网 互联网是全球范围内的网络…

十二、磁盘的调度算法

1.先来先服务(FCFS) 思想 优点 缺点 按访问请求到达的先后顺序进行处理 公平; 如果请求访问的磁道比较集中的话&#xff0c;算法性能还算过的去 如果有大量进程竞争使用磁盘&#xff0c;请求访问的磁道很分散&#xff0c;则FCFS在性能上很差&#xff0c;寻道时间长。 2.最…

STM32新建工程-基于库函数

一、创建一个新工程 我这里选择STM32F103C8的型号&#xff0c;然后点击OK。 keil5里面的小助手&#xff0c;暂时不用&#xff0c;叉掉 二、为工程添加文件和路径 在工程模板中还需要添加启动文件、系统头文件、系统时钟文件&#xff0c;创建一个文件夹start&#xff0c;将下面…

wenyan:markdown 一键转换文章排版

介绍 今天给大家介绍一个markdown排版成自媒体文章的工具。 markdown 的重要性和便捷性不用再多说&#xff0c;但是从markdown 转换到文章排版&#xff0c;我换了很多个也都很不满意&#xff0c;尤其在不支持markdown的平台&#xff0c;更是一言难尽。 本次介绍的wenyan的核心…

C++语言学习(1): std::endl 在做什么?

std::endl 是一个函数&#xff08;而不是变量&#xff09;&#xff1a; std::endl 会向控制台写入 \n 字符&#xff0c;并且刷新缓冲。 刷新缓冲肯定比不刷新缓冲慢。 这就是为什么有些 guide 里提到&#xff0c;少用 std::endl, 多用 \n.

HarmonyOS NEXT:实现电影列表功能展示界面

时至今日HarmonyOS NEXT早已发布运行了&#xff0c;等其正式推出并大规模商用后&#xff0c;HarmonyOS的历史使命就完成并将退出历史舞台&#xff0c;为用户提供丰富的应用选择。但是Harmony NEXT是在HarmonyOS基础上剔除安卓&#xff08;AOSP&#xff09;后的产品&#xff0c;…

C++进阶(3): 二叉搜索树

二叉搜索树的概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一颗空树&#xff0c;或者具有以下性质的二叉树&#xff1a; 若它的左子树不为空&#xff0c;则左子树上所有的节点的值都小于等于 根节点的值若它的右子树不为空&#xff0c;则右子树上所有的节点的值都大于等…

嘉立创编辑器中删除自己画的封装

快速创建一个元件及封装可参考 需要删除封装的原因 在添加新的元件时&#xff0c;有时候明明关联了封装和符号&#xff0c;但在原理图中添加元件时会出现封装未添加的问题。可能是这个立创EDA中有些功能问题很少使用&#xff0c;所以没完善。而且发现在封装中可以关联器件&am…

【开源鸿蒙】OpenHarmony 5.0.0 发布了,速来下载最新代码

【开源鸿蒙】OpenHarmony 5.0.0 发布了&#xff0c;速来下载最新代码 一、写在前面二、准备命令工具三、配置用户信息四、下载OpenHarmony源码4.1 使用ssh协议下载&#xff08;推荐&#xff09;4.2 使用https协议下载 五、下载编译工具链六、参考链接 今天是9月30号&#xff0c…

ThreadLocal原理解析及面试

基本使用 讲原理之前&#xff0c;我简单写个demo小程序 public class TestThreadLocal {public static void main(String[] args) throws InterruptedException {ThreadLocal<String> tl new ThreadLocal();/**主线程设置了一个值*/tl.set("SSSSSs");//tl.…

阿里云域名注册购买和备案

文章目录 1、阿里云首页搜索 域名注册2、点击 控制台3、域名控制台 1、阿里云首页搜索 域名注册 2、点击 控制台 3、域名控制台