《深度学习》【项目】OpenCV 发票识别 透视变换、轮廓检测解析及案例解析

目录

一、透视变换

1、什么是透视变换

2、操作步骤

        1)选择透视变换的源图像和目标图像

        2)确定透视变换所需的关键点

        3)计算透视变换的变换矩阵

        4)对源图像进行透视变换

        5)对变换后的图像进行插值处理

二、轮廓检测

1、什么是轮廓检测

2、操作步骤

        1)图像预处理

        2)边缘检测

        3)边缘连接

        4)轮廓筛选

        5)轮廓绘制

三、项目实施

1、定义展示图片函数

2、定义自动缩放图片大小函数

3、定义轮廓点的排序函数

4、定义透视变换函数

5、读取原图并缩放

        运行结果:

6、进行轮廓检测

        运行结果:

5、绘制最大轮廓

        运行结果:

6、对最大轮廓进行透视变换

        运行结果:

7、旋转、二值化处理

        运行结果:


一、透视变换

1、什么是透视变换

        透视变换是一种图像处理技术,用于将二维平面上的图像或物体映射三维空间中。它通过改变图像的视角和投影来创建一个具有透视效果的图像。

        透视变换通常用于计算机图像形态学计算机视觉领域,用于实现图像的透视效果立体视觉图像校正等应用。它可以模拟人眼在观察远景时的透视效果,使得远处的物体看起来比近处的物体小,同时使得平行线在远处会相交的视觉效果。

        透视变换的实现通常需要通过计算图像中各点在三维空间中的坐标,并将其映射回二维平面上,从而实现透视效果。这个过程涉及到几何变换矩阵运算投影变换等数学概念和算法。

2、操作步骤

        1)选择透视变换的源图像和目标图像

                源图像是需要进行透视变换的原始图像,目标图像是希望得到的透视变换后的图像。

        2)确定透视变换所需的关键点

                根据透视变换的要求,需要选择源图像中的四个关键点以及对应的目标图像中的四个关键点。这四个关键点共同决定了透视变换的变换矩阵。

        3)计算透视变换的变换矩阵

                通过四个关键点的对应关系,使用透视变换的数学公式计算出透视变换的变换矩阵。这个变换矩阵将源图像中的像素映射到目标图像中的像素。

        4)对源图像进行透视变换

                使用计算得到的变换矩阵,对源图像中的每个像素进行变换,计算其在目标图像中的对应像素位置。

        5)对变换后的图像进行插值处理

                由于透视变换可能会导致源图像中的像素映射到目标图像中的非整数位置,因此需要对其进行插值处理,以得到最终的目标图像。

二、轮廓检测

1、什么是轮廓检测

        轮廓检测是一种图像处理技术,用于在图像中找到物体的边界。在图像处理领域中,物体的边界通常被表示为连续的曲线,这些曲线被称为轮廓。轮廓检测算法可以识别图像中的明显变化或不连续的像素,从而确定物体的形状和结构。

        轮廓检测算法的基本原理是通过分析图像中的亮度、颜色或纹理等特征,找到物体与背景之间的显著边缘或变化。常用的轮廓检测算法包括Canny边缘检测、Sobel算子、拉普拉斯算子等

        通过轮廓检测,可以实现图像分割、目标识别、形状匹配等应用。在计算机视觉和图像处理领域中,轮廓检测是一项重要的技术,广泛应用于物体检测与跟踪、图像分析与理解、机器视觉等领域。

2、操作步骤

        1)图像预处理

                首先对输入图像进行预处理,可以包括灰度化、平滑滤波、边缘增强等操作,以减少噪声和突出边缘信息。

        2)边缘检测

                使用边缘检测算法(如Canny、Sobel、拉普拉斯等)来检测图像中的边缘。这些算法通过计算像素间的梯度或差异,找到亮度或颜色变化较大的区域。

        3)边缘连接

                将离散的边缘点连接成连续的轮廓线。常用的方法包括利用边缘点的邻域信息进行连接,或者利用轮廓线的闭合性质进行曲线追踪。

        4)轮廓筛选

                根据一定的准则对检测到的轮廓进行筛选,去除无关的轮廓。可以根据轮廓的长度、面积、形状等特征进行筛选。

        5)轮廓绘制

                最后,将筛选后的轮廓绘制在原始图像上,以便观察和分析。

具体可参考博客:

《深度学习》OpenCV 图像轮廓检测、轮廓处理及代码演示icon-default.png?t=O83Ahttps://ahao1004.blog.csdn.net/article/details/141830045?fromshare=blogdetail&sharetype=blogdetail&sharerId=141830045&sharerefer=PC&sharesource=qq_64603703&sharefrom=from_link

三、项目实施

1、定义展示图片函数

import numpy as np
import cv2
def cv_show(name,img):cv2.imshow(name,img)cv2.waitKey(0)

2、定义自动缩放图片大小函数

# 调整图像高宽,保持图像宽高比不变
def resize(image,width=None,height=None ,inter=cv2.INTER_AREA):  # 输入参数为图像、可选宽度、可选高度、插值方式默认为cv2.INTER_AREA,即面积插值dim = None   # 存储计算后的目标尺寸w、h(h,w) = image.shape[:2]  # 返回输入图像高宽if width is None and height is None:   # 判断是否指定了宽和高大小,如果没有指定则返回原图return imageif width is None:   # 判断如果没有指定宽度大小,则表示指定了高度大小,那么运行内部代码r = height/float(h)   # 指定高度与原图高度的比值dim = (int(w*r),height)   # 宽度乘以比值得到新的宽度,此处得到新的宽高else:  # 此处表示为width不是None,即指定了宽度,与上述方法一致,计算比值r = width/float(w)dim = (width,int(h*r))resized = cv2.resize(image,dim,interpolation=inter)     # 指定图像大小为上述的dim,inter默认为cV2.INTER_AREA,即面积插值,适用于缩放图像。return resized

3、定义轮廓点的排序函数

def order_points(pts):   # 对输入的四个点按照左上、右上、右下、左下进行排序rect = np.zeros((4,2),dtype='float32')   # 创建一个4*2的数组,用来存储排序之后的坐标位置# 按顺序找到对应坐标0123分别是左上、右上、右下、左下s = pts.sum(axis=1)   # 对pts矩阵的每个点的x y相加rect[0] = pts[np.argmin(s)]    # np.argmin(s)表示数组s中最小值的索引,表示左上的点的坐标rect[2] = pts[np.argmax(s)]    # 返回最大值索引,即右下角的点坐标diff = np.diff(pts,axis=1)   # 对pts矩阵的每一行的点求差值rect[1] = pts[np.argmin(diff)]   # 差值最小的点为右上角点rect[3] = pts[np.argmax(diff)]   # 差值最大表示左下角点return rect   # 返回排序好的四个点的坐标

4、定义透视变换函数

# 将透视扭曲的矩形变换成一个规则的矩阵
def four_point_transform(image,pts):# 获取输入坐标点rect = order_points(pts)  # 为上述排序的四个点(tl,tr,br,bl) = rect   # 分别返回给四个值,分别表示为左上、右上、右下、左下# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1]-bl[1]) ** 2))   # 计算四边形底边的宽度widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1]-tl[1]) ** 2))   # 计算顶边的宽度maxWidth = max(int(widthA), int(widthB))   # 返回最大宽度heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))   # 计算左上角到右下角的对角线长度heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))   # 计算右上角到左下角的高的长度maxHeight = max(int(heightA),int(heightB))   # 返回最长的高度# 变换后对应坐标位置dst = np.array([[0,0],   # 定义四个点,表示变换后的矩阵的角点[maxWidth-1,0],[maxWidth-1,maxHeight-1],[0,maxHeight-1]],dtype='float32')M = cv2.getPerspectiveTransform(rect,dst)  # 根据原始点和变换后的点计算透视变换矩阵Mwarped = cv2.warpPerspective(image,M,(maxWidth,maxHeight))  # 对原始图像,针推变换矩阵和输出图像大小进行透视变换,返回变换后的图片# 返回变换后的结果return warped

5、读取原图并缩放

# # 读取输入
image = cv2.imread('fapiao.jpg')   # 读取原图
cv_show('image',image)   # 展示原图# 图片过大,进行缩小处理
ratio = image.shape[0] / 500.0  # 计算缩小比率,[0]表示图像的高
orig = image.copy()   # 对原图复制生成副本
image = resize(orig, height=500)   # 更改图像尺寸,输入高度自动生成宽度
cv_show('1',image)   # 展示缩放后的图片
        运行结果:

6、进行轮廓检测

gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)  # 灰度图edged = cv2.threshold(gray,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]  # 进行二值化,cv2.THRESH_OTSU自动寻找最优全局阈值,255表示高于最优阈值时将其更改为255
cnts = cv2.findContours(edged.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)[1]  # 轮廓检测
# cv2.RETR_LIST表示检索所有轮廓,但是不建立层次关系
# cv2.CHAIN_APPROX_SIMPLE 表示只保存轮廓拐点的信息
# 总体返回处理的图像、轮廓列表、层次结构,这里返回索引为1,表示返回轮廓列表image_contours = cv2.drawContours(image.copy(),cnts,-1,(0,0,255),1)  # 绘制所有轮廓
# 在原始图像的副本上绘制了轮廓
# 绘制轮廓的位置为上述获取的拐点信息,绘制线条颜色为红色BRG(0,0,255),线条粗细为1个像素cv_show('image_contours',image_contours)  # 展示绘制好的图片
        运行结果:

5、绘制最大轮廓

screenCnt = sorted(cnts,key = cv2.contourArea,reverse=True)[0]   # 对上述获取的轮廓列表,排序依据是轮廓面积,reverse=True表示降序,[0]表示获取面积最大的轮廓
peri = cv2.arcLength(screenCnt,True)   # 计算最大轮廓的周长
screenCnt = cv2.approxPolyDP(screenCnt,0.02*peri,True)  # 轮廓近似,近似为一个多边形,表示新的轮廓与原来的轮廓最大距离不超过原始轮廓宽度的0.02倍,True表示轮廓为闭合的
image_contour = cv2.drawContours(image.copy(),[screenCnt],-1,(0,255,0),2)  # 绘制轮廓,将上述找到的轮廓绘制到原图的副本上
cv2.imshow('image_contour',image_contour)
cv2.waitKey(0)
        运行结果:

6、对最大轮廓进行透视变换

warped = four_point_transform(orig,screenCnt.reshape(4,2)*ratio)  # 输入参数原图,将最大轮廓图形状改变为4*2的格式,即四个点,然后乘以上述定义的比率来缩放轮廓
cv2.imwrite('invoice_new.jpg',warped)   # 将经过透视变换处理的图片存入本地
cv2.namedWindow('xx',cv2.WINDOW_NORMAL)  # 设置一个窗口,名称为xx,这个窗口大小用户可通过拖动随意调节大小
cv2.imshow('xx',warped)  # 展示经过透视变换处理的图片
cv2.waitKey(0)
        运行结果:

7、旋转、二值化处理

# 二值处理
warped = cv2.cvtColor(warped,cv2.COLOR_BGR2GRAY)   # 导入新的图片的灰度图
ref = cv2.threshold(warped,0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU)[1]  # 对灰度图进行二值化处理kernel = np.ones((2,2),np.uint8)   # 设置一个单位矩阵,大小为2*2,表示设置核kernel的大小
ref_new = cv2.morphologyEx(ref,cv2.MORPH_CLOSE,kernel)   # 闭运算,先膨胀再腐蚀
ref_new = resize(ref_new.copy(),width=500)   # 对闭运算处理完的图像重置大小
cv_show('yy',ref_new)
rotated_image = cv2.rotate(ref_new,cv2.ROTATE_90_COUNTERCLOCKWISE)  # 对图像逆时针旋转90度
cv2.imshow('result',rotated_image)
cv2.waitKey(0)
        运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1549594.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv8改进,YOLOv8主干网络替换为GhostNetV3(2024年华为提出的轻量化架构,全网首发),助力涨点

摘要 GhostNetV3 是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。 摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能…

【d53】【Java】【力扣】24.两两交换链表中的节点

思路 定义一个指针cur, 先指向头节点, 1.判断后一个节点是否为空,不为空则交换值, 2.指针向后走两次 代码 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*…

Java_集合_双列集合_Map

第一章Map集合 Map是双列集合顶级接口 什么叫做双列集合:一个元素有两部分构成:key和value -> 键值对 1.1.HashMap 常用方法: V put(K key, V value) -> 添加元素,返回的是被替换的value值 V remove(Object key) ->根据key删除键值对,返回的是被删除的value…

Codeforces Round 975 (Div. 1) D. Max Plus Min Plus Size(思维题 并查集/动态dp 线段树维护状态合并)

题目 思路来源 hhoppitree代码 官方题解 题解 注意到最大值一定会被取到, 对于最小值固定的话,对于1 2 3 4 5的连续段,要么贪心地取1 3 5,要么取2 4 如果最大值被包含在1 3 5里显然取1 3 5,否则换成2 4一定能取到…

亚马逊爆款三明治封口器发明专利维权,恐涉及大量卖家,速查

案件基本情况:起诉时间:2024-9-18案件号:2024-cv-08606原告:Jetteo, LLC原告律所:AVEK IP, LLC起诉地:伊利诺伊州北部法院涉案商标/版权:原告品牌简介:Jetteo,LLC&#x…

蜂鸟bebirdt15、西圣find、泰视朗可视挖耳勺好用吗?测评数据对比看这里

可视挖耳勺在当下已经被广泛使用,不过对于新手来说,选择一款优质产品却并不容易。蜂鸟t15、西圣find、泰视朗可视挖耳勺好用吗?作为一个测评博主,近期有不少用户问我这个问题。 根据目前市场上可视挖耳勺的品牌情况来看&#xff0…

A股突破3000,连续大涨,公司国庆假放10天

关注▲洋洋科创星球▲一起成长! 庆祝A股突破3000,连续大涨,也不知道老板抽了什么风,公司今天开始放国庆假了,连休10天,哈哈哈哈哈哈。 27号开始放国庆假,连休10,刺激。 中秋国庆这一…

【C++】继承,菱形继承,虚拟继承,组合详解

目录 1. 继承概念与定义 1.1 概念 1.2 定义 2. 父类与子类的赋值规则 3. 继承的作用域 4. 子类的默认成员函数 5. 继承与友元 6. 继承与静态成员 7. 菱形继承 7.1 继承关系 7.2 菱形继承的问题 7.3 虚拟继承 8. 继承与组合 1. 继承概念与定义 1.1 概念 1. 继承&a…

论文速递 | Management Science 8月文章合集

编者按 在本系列文章中,我们对顶刊《Management Science》于8月份发布文章中进行了精选(共9篇),并总结其基本信息,旨在帮助读者快速洞察行业最新动态。 推荐文章1 ● 题目:Optimal Mechanism Design with …

红队信息搜集扫描使用

红队信息搜集扫描使用 红队行动中需要工具化一些常用攻击,所以学习一下 nmap 等的常规使用,提供灵感 nmap 帮助 nmap --help主机扫描 Scan and no port scan(扫描但不端口扫描)。-sn 在老版本中是 -sP,P的含义是 P…

基于SPI协议的Flash驱动控制

1、理论知识 SPI(Serial Peripheral Interface,串行外围设备接口)通讯协议,是Motorola公司提出的一种同步串行接口技术,是一种高速、全双工、同步通信总线,在芯片中只占用四根管脚用来控制及数据传输&#…

【Python】利用Python+thinker实现旋转转盘

需求/目的:用Pythonthinker实现转盘,并且能够随机旋转任意角度。 转盘形式: 主界面: from tkinter import *winTk() win.title("大转盘") win.geometry("300x400")win.mainloop() 转盘绘制: 这…

USMART调试组件学习

USMART调试组件学习日记 写于2024/9/24日晚 文章目录 USMART调试组件学习日记1. 简介2. 调试组件组成3.程序流程图4. 移植解析5. 实验效果5. 实验效果 1. 简介 USMART 是由正点原子开发的一个灵巧的串口调试互交组件,通过它你可以通过串口助手调用程序里面的任何函…

SigLIP技术小结

paperhttps://arxiv.org/abs/2303.15343githubhttps://github.com/google-research/big_vision个人博客位置http://myhz0606.com/article/siglip 1 背景 CLIP[1]自提出以来在zero-shot分类、跨模态搜索、多模态对齐等多个领域得到广泛应用。得益于其令人惊叹的能力&#xff0…

备考中考的制胜法宝 —— 全国历年中考真题试卷大全

在中考这场重要的战役中,每一分都至关重要。为了帮助广大考生更好地备考,我们精心整理了这份全国历年中考真题试卷大全,旨在为大家提供最全面、最权威的备考资料。 文章目录 1. 全科覆盖,无遗漏2. 历年真题,权威可靠3.…

数据结构——“AVL树”的四种数据旋转的方法

因为上次普通的二叉搜索树在极端情况下极容易造成我们的链式结构(这会导致我们查询的时间复杂度变为O(n)),然而AVL树就很好的解决了这一问题(归功于四种旋转的方法),它让我们的树的查询的时间复杂度变得接近…

QT--基础

将默认提供的程序都注释上意义 0101.pro QT core gui #QT表示要引入的类库 core:核心库 gui:图形化界面库 #如果要使用其他库类中的相关函数,则需要加对应的库类后,才能使用 greaterThan(QT_MAJOR_VERSION, 4): QT wid…

关于frp Web界面-----frp Server Dashboard 和 frp Client Admin UI

Web 界面 官方文档:https://gofrp.org/zh-cn/docs/features/common/ui/ 目前 frpc 和 frps 分别内置了相应的 Web 界面方便用户使用。 客户端 Admin UI 服务端 Dashboard 服务端 Dashboard 服务端 Dashboard 使用户可以通过浏览器查看 frp 的状态以及代理统计信…

GD32片内flash读写数据

如有技术问题及技术需求请加作者微信! GD32片内Flash的读写数据是微控制器编程中的常见任务,主要用于存储程序代码、配置参数或用户数据等。以下将详细介绍GD32片内Flash的读写数据方法和程序。 一、GD32 Flash的基本特性 存储空间划分:GD32的Flash存储空间通常分为主存储块…

罕见 P0 故障!上交所崩了 ~

大家好啊,我是董董灿。 昨天(9月27号)很多朋友可能都刷到一个消息:上交所崩了。 原因是在近期经济政策的刺激下,我大A股市场出现反弹,很多投资者纷纷涌入大A进行交易。 A 股反弹本来是件好事&#xff0c…