【机器学习(十)】时间序列预测月销量案例分析—Holt-Winters算法—Sentosa_DSML社区版

文章目录

  • 一、Holt-Winters算法原理
    • (一) 加法模型
    • (二) 乘法模型
    • (三) 阻尼趋势
  • 二、Holt Winters算法优缺点
    • 优点
    • 缺点
  • 三、Python代码和Sentosa_DSML社区版算法实现对比
    • (一) 数据读入和统计分析
    • (二) 数据预处理
    • (三) 模型训练和模型评估
    • (四) 模型可视化
  • 四、总结

一、Holt-Winters算法原理

什么是Holt-Winters预测算法?
  Holt-Winters算法是一种时间序列预测方法。时间序列预测方法用于提取和分析数据和统计数据并表征结果,以便根据历史数据更准确地预测未来。Holt-Winters 预测算法允许用户平滑时间序列并使用该数据预测感兴趣的领域。指数平滑法会根据历史数据分配指数递减的权重和值,以降低较旧数据的权重值。换句话说,在预测中,较新的历史数据比较旧的结果具有更大的权重。
  Holt-Winters中使用的指数平滑方法有三种:
  单指数平滑——适用于预测没有趋势或季节性模式的数据,其中数据水平可能随时间而变化。
  双重指数平滑法——用于预测存在趋势的数据。
  三重指数平滑法——用于预测具有趋势和/或季节性的数据。
  Holt-Winters包括预测方程和三个平滑方程,分别用于处理水平 ℓ t , \ell_{t}, t, 趋势 b t b_{t} bt 和季节性成分 s t s t st ,对应的平滑参数分别是 α , β ∗ \alpha, \ \beta^{*} α, β γ \gamma γ 。通常用 m m m 表示季节性的周期,比如季度数据 m = 4 m=4 m=4 ,月度数据 m = 12 m=1 2 m=12 ,
  Holt-Winters方法有两种变体,主要区别在于季节性成分的处理方式:
  1. 加法模型:当季节性变化较为稳定时使用加法模型。
  2. .乘法模型:当季节性变化与数据水平成比例变化时,适用乘法模型。

(一) 加法模型

  在加法模型中,季节性成分用绝对值来表示,并在水平方程中通过减去季节性成分来对数据进行季节性调整。每年内,季节性成分的和大约为零。加法模型的分量形式为:
y ^ t + h ∣ t = ℓ t + h b t + s t + h − m ( k + 1 ) \hat{y}_{t+h | t}=\ell_{t}+h b_{t}+s_{t+h-m ( k+1 )} y^t+ht=t+hbt+st+hm(k+1)
  包含三个平滑方程,其中,水平方程是一个加权平均,包含季节性调整后的观察值 ( y t − s t − m ) ( y_{t}-s_{t-m} ) (ytstm) 和非季节性预测值 ( ℓ t − 1 + b t − 1 ) ( \ell_{t-1}+b_{t-1} ) (t1+bt1)
ℓ t = α ( y t − s t − m ) + ( 1 − α ) ( ℓ t − 1 + b t − 1 ) \ell_{t}=\alpha( y_{t}-s_{t-m} )+( 1-\alpha) ( \ell_{t-1}+b_{t-1} ) t=α(ytstm)+(1α)(t1+bt1)
  趋势方程与Holt的线性方法相同。
b t = β ∗ ( ℓ t − ℓ t − 1 ) + ( 1 − β ∗ ) b t − 1 b_{t}=\beta^{*} ( \ell_{t}-\ell_{t-1} )+( 1-\beta^{*} ) b_{t-1} bt=β(tt1)+(1β)bt1
  季节性方程通过当前的季节性指数 ( y t − ℓ t − 1 − b t − 1 ) ( y_{t}-\ell_{t-1}-b_{t-1} ) (ytt1bt1) 和上一年同一季节的季节性指数 s t − m s_{t-m} stm 来平滑季节性成分。
s t = γ ( y t − ℓ t − 1 − b t − 1 ) + ( 1 − γ ) s t − m s_{t}=\gamma( y_{t}-\ell_{t-1}-b_{t-1} )+( 1-\gamma) s_{t-m} st=γ(ytt1bt1)+(1γ)stm

(二) 乘法模型

  在乘法模型中,季节性成分以相对值(百分比)表示,并通过将时间序列除以季节性成分来进行季节性调整。每年内,季节性成分的和约为 m ∘ m_{\circ} m ,乘法模型的分量形式为:
y ^ t + h ∣ t = ( ℓ t + h b t ) s t + h − m ( k + 1 ) \hat{y}_{t+h | t}=( \ell_{t}+h b_{t} ) s_{t+h-m ( k+1 )} y^t+ht=(t+hbt)st+hm(k+1)
ℓ t = α y t s t − m + ( 1 − α ) ( ℓ t − 1 + b t − 1 ) \ell_{t}=\alpha{\frac{y_{t}} {s_{t-m}}}+( 1-\alpha) ( \ell_{t-1}+b_{t-1} ) t=αstmyt+(1α)(t1+bt1)
b t = β ∗ ( ℓ t − ℓ t − 1 ) + ( 1 − β ∗ ) b t − 1 b_{t}=\beta^{*} ( \ell_{t}-\ell_{t-1} )+( 1-\beta^{*} ) b_{t-1} bt=β(tt1)+(1β)bt1
s t = γ y t ( ℓ t − 1 + b t − 1 ) + ( 1 − γ ) s t − m s_{t}=\gamma{\frac{y_{t}} {( \ell_{t-1}+b_{t-1} )}}+( 1-\gamma) s_{t-m} st=γ(t1+bt1)yt+(1γ)stm

(三) 阻尼趋势

  Holt-Winters 可以在加法和乘法季节性模型中引入阻尼(Damping)趋势。阻尼趋势能够使模型在预测未来趋势时更加稳健,避免趋势无限延伸,适用于那些趋势可能逐渐趋于稳定的时间序列数据,该方法结合了季节性和趋势的平滑,并通过阻尼因子 𝜙(0<𝜙<1) 控制趋势的持续性,将 𝜙 引入到趋势分量中,使得未来的趋势贡献逐渐减小。这样,随着预测期的增加,趋势的影响力会逐渐减弱,从而避免过度延伸。
  结合了阻尼趋势的乘法季节性的预测方程为:
y ^ t + h ∣ t = [ ℓ t + ( ϕ + ϕ 2 + ⋯ + ϕ h ) b t ] s t + h − m ( k + 1 ) \hat{y}_{t+h | t}=\left[ \ell_{t}+( \phi+\phi^{2}+\cdots+\phi^{h} ) b_{t} \right] s_{t+h-m ( k+1 )} y^t+ht=[t+(ϕ+ϕ2++ϕh)bt]st+hm(k+1)
ℓ t = α ( y t s t − m ) + ( 1 − α ) ( ℓ t − 1 + ϕ b t − 1 ) \ell_{t}=\alpha\left( \frac{y_{t}} {s_{t-m}} \right)+\left( 1-\alpha\right) \left( \ell_{t-1}+\phi b_{t-1} \right) t=α(stmyt)+(1α)(t1+ϕbt1)
b t = β ∗ ( ℓ t − ℓ t − 1 ) + ( 1 − β ∗ ) ϕ b t − 1 b_{t}=\beta^{*} \left( \ell_{t}-\ell_{t-1} \right)+( 1-\beta^{*} ) \phi b_{t-1} bt=β(tt1)+(1β)ϕbt1
s t = γ ( y t ℓ t − 1 + ϕ b t − 1 ) + ( 1 − γ ) s t − m s_{t}=\gamma\left( {\frac{y_{t}} {\ell_{t-1}+\phi b_{t-1}}} \right)+( 1-\gamma) s_{t-m} st=γ(t1+ϕbt1yt)+(1γ)stm

二、Holt Winters算法优缺点

优点

  1、Holt-Winters 方法能够有效捕捉和建模时间序列中的季节性变化,适用于具有周期性波动的数据。
  2、通过平滑参数的设置,Holt-Winters 方法能够动态调整对趋势和季节性的估  计,适应时间序列数据的变化。
  3、模型中包含的参数(水平、趋势、季节性)易于解释,便于理解时间序列的组成部分。
  4、在短期预测方面,Holt-Winters 方法通常能提供较高的准确性。

缺点

  平滑参数的选择对模型性能有很大影响,通常需要通过经验或交叉验证来优化这些参数,增加了模型设置的复杂性。
  在长周期时间序列的预测中,Holt-Winters 方法可能会产生不切实际的趋势,特别是没有阻尼的情况下,可能导致长期预测的结果不稳定。

三、Python代码和Sentosa_DSML社区版算法实现对比

(一) 数据读入和统计分析

1、python代码实现

#导入需要的库
import os
import pandas as pd
import numpy as np
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from matplotlib import rcParams
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScalerfile_path = r'.\每月香槟销量.csv'#文件路径
df = pd.read_csv(file_path, header=0)
print("原始数据前5行:")
print(df.head())>>原始数据前5:Month  Perrin Freres monthly champagne sales millions ?64-?72
0  1964-01                                             2815.0     
1  1964-02                                             2672.0     
2  1964-03                                             2755.0     
3  1964-04                                             2721.0     
4  1964-05                                             2946.0     df = df.rename(columns={'Month': '月份','Perrin Freres monthly champagne sales millions ?64-?72': '香槟销量'
})print("\n修改列名后的数据前5行:")
print(df.head())>>修改列名后的数据前5:月份    香槟销量
0  1964-01  2815.0
1  1964-02  2672.0
2  1964-03  2755.0
3  1964-04  2721.0
4  1964-05  2946.0

  完成数据读入后,对数据进行统计分析,统计数据分布图,计算每一列数据的极值、异常值等结果。代码如下:

stats_df = pd.DataFrame(columns=['列名', '数据类型', '最大值', '最小值', '平均值', '非空值数量', '空值数量','众数', 'True数量', 'False数量', '标准差', '方差', '中位数', '峰度', '偏度','极值数量', '异常值数量'
])def detect_extremes_and_outliers(column, extreme_factor=3, outlier_factor=5):q1 = column.quantile(0.25)q3 = column.quantile(0.75)iqr = q3 - q1lower_extreme = q1 - extreme_factor * iqrupper_extreme = q3 + extreme_factor * iqrlower_outlier = q1 - outlier_factor * iqrupper_outlier = q3 + outlier_factor * iqrextremes = column[(column < lower_extreme) | (column > upper_extreme)]outliers = column[(column < lower_outlier) | (column > upper_outlier)]return len(extremes), len(outliers)for col in df.columns:col_data = df[col]dtype = col_data.dtypemax_value = col_data.max() if np.issubdtype(dtype, np.number) else Nonemin_value = col_data.min() if np.issubdtype(dtype, np.number) else Nonemean_value = col_data.mean() if np.issubdtype(dtype, np.number) else Nonenon_null_count = col_data.count()null_count = col_data.isna().sum()mode_value = col_data.mode().iloc[0] if not col_data.mode().empty else Nonetrue_count = col_data[col_data == True].count() if dtype == 'bool' else Nonefalse_count = col_data[col_data == False].count() if dtype == 'bool' else Nonestd_value = col_data.std() if np.issubdtype(dtype, np.number) else Nonevar_value = col_data.var() if np.issubdtype(dtype, np.number) else Nonemedian_value = col_data.median() if np.issubdtype(dtype, np.number) else Nonekurtosis_value = col_data.kurt() if np.issubdtype(dtype, np.number) else Noneskew_value = col_data.skew() if np.issubdtype(dtype, np.number) else Noneextreme_count, outlier_count = detect_extremes_and_outliers(col_data) if np.issubdtype(dtype, np.number) else (None, None)new_row = pd.DataFrame({'列名': [col],'数据类型': [dtype],'最大值': [max_value],'最小值': [min_value],'平均值': [mean_value],'非空值数量': [non_null_count],'空值数量': [null_count],'众数': [mode_value],'True数量': [true_count],'False数量': [false_count],'标准差': [std_value],'方差': [var_value],'中位数': [median_value],'峰度': [kurtosis_value],'偏度': [skew_value],'极值数量': [extreme_count],'异常值数量': [outlier_count]})stats_df = pd.concat([stats_df, new_row], ignore_index=True)print(stats_df)>>     列名     数据类型      最大值     最小值  ...        峰度        偏度  极值数量 异常值数量
0    月份   object      NaN     NaN  ...       NaN       NaN  None  None
1  香槟销量  float64  13916.0  1413.0  ...  2.702889  1.639003     3     0rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['SimHei']output_dir = r'.\holtwinters'#选择路径if not os.path.exists(output_dir):os.makedirs(output_dir)for col in df.columns:plt.figure(figsize=(10, 6))df[col].dropna().hist(bins=30)plt.title(f"{col} - 数据分布图")plt.ylabel("频率")file_name = f"{col}_数据分布图.png"file_path = os.path.join(output_dir, file_name)plt.savefig(file_path)plt.close()

在这里插入图片描述
2、Sentosa_DSML社区版实现

  首先,进行数据读入,利用文本算子直接对数据进行读取,选择数据所在路径,
在这里插入图片描述
  同时,可以在文本算子的删除和重命名配置中修改列名或者删除列,这里将列明分别修改为’月份’和 ‘香槟销量’。
在这里插入图片描述
  点击应用,右击预览可以查看数据。
在这里插入图片描述
  接着,利用描述算子即可对数据进行统计分析,得到每一列数据的数据分布图、极值、异常值等结果。连接描述算子,右侧设置极值倍数为3,异常值倍数为5。
在这里插入图片描述
  右击执行,可以得到结果如下:
在这里插入图片描述

(二) 数据预处理

1、python代码实现

#数据预处理
for col in df.columns:print(f"列名: {col}, 数据类型: {df[col].dtype}")>>列名: 月份, 数据类型: object
列名: 香槟销量, 数据类型: float64df = df.dropna()
df['月份'] = pd.to_datetime(df['月份'], format='%Y-%m', errors='coerce')  df['香槟销量'] = pd.to_numeric(df['香槟销量'], errors='coerce') 
df = df.dropna(subset=['香槟销量'])
df['香槟销量'] = df['香槟销量'].astype(int)for col in df.columns:print(f"列名: {col}, 数据类型: {df[col].dtype}")print(df)
>>列名: 月份, 数据类型: datetime64[ns]
列名: 香槟销量, 数据类型: int32filtered_df1 = df[df['月份'] <= '1971-09']
print(filtered_df1)
>>            月份  香槟销量
0   1964-01-01  2815
1   1964-02-01  2672
2   1964-03-01  2755
3   1964-04-01  2721
4   1964-05-01  2946filtered_df2 = df[df['月份'] > '1971-09']
print(filtered_df2)>>    月份   香槟销量
93  1971-10-01   6981
94  1971-11-01   9851
95  1971-12-01  12670
96  1972-01-01   4348
97  1972-02-01   3564filtered_df1.set_index('月份', inplace=True)
resampled_df1 = filtered_df1['香槟销量'].resample('MS').bfill()print(resampled_df1)>>     月份   香槟销量
1964-01-01    2815
1964-02-01    2672
1964-03-01    2755
1964-04-01    2721
1964-05-01    2946... 
1971-05-01    5010
1971-06-01    4874
1971-07-01    4633
1971-08-01    1659
1971-09-01    5951

2、Sentosa_DSML社区版实现

  首先,连接格式算子对数据进行格式修改,将月份数据格式由String类型修改为Data类型。
在这里插入图片描述
  其次,对数据进行过滤,将小于等于1971-09的数据作为训练和验证数据集,条件为大于1971-09的数据用于与时序预测数据做对比。可以利用两个过滤算子实现,算子右侧表格中属性“表达式”为spark sql表达式。
  第一个过滤算子,条件为月份<=‘1971-09’,
在这里插入图片描述
  第二个过滤算子条件为月份>‘1971-09’,右击预览即可查看过滤数据。
在这里插入图片描述
  连接时序数据清洗算子,对用于模型训练的数据进行预处理,设置时间列为月份(时间列必须为Data/DataTime类型数据),选择采样频率使时间列数据时间相隔为1月,对香槟销量列以线性方式进行数据填充。
在这里插入图片描述

(三) 模型训练和模型评估

1、python代码实现

#模型定义
model = ExponentialSmoothing(resampled_df1, trend='add', seasonal='mul', seasonal_periods=12,damped_trend=True)
fit = model.fit(damping_slope=0.05)#预测
forecast = fit.predict(start=len(resampled_df1), end=len(resampled_df1) + 11
)residuals = resampled_df1 - fit.fittedvalues
residual_std = np.std(residuals)
upper_bound = forecast + 1.96 * residual_std
lower_bound = forecast - 1.96 * residual_stdresults_df = pd.DataFrame({'预测值': forecast,'上限': upper_bound,'下限': lower_bound
})
print(results_df)
>> 月份            预测值            上限            下限
1971-10-01   7143.862498   8341.179324   5946.545672
1971-11-01  10834.141889  12031.458716   9636.825063
1971-12-01  13831.428845  15028.745671  12634.112019
1972-01-01   4054.821228   5252.138054   2857.504402
1972-02-01   3673.653407   4870.970233   2476.336580#模型评估
y_true = resampled_df1.values
y_pred = fit.fittedvalues.valuesdef evaluate_model(y_true, y_pred, model_name="Holt-Winters"):r_squared = r2_score(y_true, y_pred)mae = mean_absolute_error(y_true, y_pred)mse = mean_squared_error(y_true, y_pred)rmse = mean_squared_error(y_true, y_pred, squared=False)print(f"模型评估结果 ({model_name}):")print(f"{'-' * 40}")print(f"R² (决定系数): {r_squared:.4f}")print(f"MAE (平均绝对误差): {mae:.4f}")print(f"MSE (均方误差): {mse:.4f}")print(f"RMSE (均方根误差): {rmse:.4f}")print(f"{'-' * 40}\n")return {"R²": r_squared,"MAE": mae,"RMSE": rmse,"MSE": mse}evaluation_results = evaluate_model(y_true, y_pred, model_name="Holt-Winters")>>模型评估结果 (Holt-Winters):
----------------------------------------(决定系数): 0.9342
MAE (平均绝对误差): 451.4248
MSE (均方误差): 402168.8567
RMSE (均方根误差): 634.1678

2、Sentosa_DSML社区版实现
  在时序数据清洗算子后,连接HoltWinters算子,HoltWinters算子根据现有的时间序列对应的数据,预测未来时间的数据。算子的输入数据支持多种key键,但必须是满足相同key键下时间列间隔为固定数值,且数值列非空的时序数据,建议是时序数据清洗算子处理后的数据。
  这里将时间列设为月份列,数据列设为香槟销量列,预测数量和周期性参数设置为12,分析频率为month,模型类型为Multiplicative,显著性水平alpha设置为0.05。
在这里插入图片描述
  模型连接时间序列模型评估算子,右击执行,可以查看评估结果。
在这里插入图片描述
在这里插入图片描述

(四) 模型可视化

1、python代码实现

#可视化
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(12, 6))
plt.plot(resampled_df1, label='实际销量', color='blue')
plt.plot(fit.fittedvalues, label='拟合值', color='orange')
plt.plot(forecast, label='预测销量', color='green')
plt.title('Holt-Winters 方法预测香槟销量')
plt.xlabel('时间')
plt.ylabel('香槟销量')
plt.axvline(x=resampled_df1.index[-1], color='red', linestyle='--', label='预测起始点')
plt.legend()
plt.show()plt.figure(figsize=(12, 6))
plt.plot(resampled_df1.index, resampled_df1, label='实际值', color='blue')
plt.plot(results_df.index, results_df['预测值'], label='预测值', color='orange')
plt.fill_between(results_df.index, results_df['下限'], results_df['上限'], color='lightgray', alpha=0.5, label='95% 置信区间')
plt.title('Holt-Winters 预测与置信区间')
plt.xlabel('时间')
plt.ylabel('香槟销量')
plt.legend()
plt.show()filtered_forecast_df = results_df[results_df.index > pd.Timestamp('1971-09-01')]
print(filtered_forecast_df)
>> 月份        预测值            上限            下限
1971-10-01   7143.862498   8341.179324   5946.545672
1971-11-01  10834.141889  12031.458716   9636.825063
1971-12-01  13831.428845  15028.745671  12634.112019
1972-01-01   4054.821228   5252.138054   2857.504402
1972-02-01   3673.653407   4870.970233   2476.336580results_df = results_df.drop(columns=['上限', '下限'])
print(results_df)
>> 月份         预测值
1971-10-01   7143.862498
1971-11-01  10834.141889
1971-12-01  13831.428845
1972-01-01   4054.821228
1972-02-01   3673.653407
1972-03-01   4531.419772
1972-04-01   4821.096141results_df.index.name = '月份'
merged_df = pd.merge(filtered_df2, results_df, left_on='月份', right_index=True, how='left')print(merged_df)
>>         月份   香槟销量           预测值
93  1971-10-01   6981   7143.862498
94  1971-11-01   9851  10834.141889
95  1971-12-01  12670  13831.428845
96  1972-01-01   4348   4054.821228
97  1972-02-01   3564   3673.653407scaler = StandardScaler()
merged_df[['香槟销量', '预测值']] = scaler.fit_transform(merged_df[['香槟销量', '预测值']])plt.figure(figsize=(12, 6))
plt.plot(merged_df['月份'], merged_df['香槟销量'], label='香槟销量', color='blue')
plt.plot(merged_df['月份'], merged_df['预测值'], label='香槟预测销量', color='orange')
plt.title('时序图')
plt.xlabel('时间')
plt.ylabel('香槟销量')
plt.legend()
plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、Sentosa_DSML社区版实现

  为了对比原始数据和预测数据,首先,利用过滤算子对HoltWinters模型预测数据进行过滤,过滤条件为月份>‘1971-09’。
在这里插入图片描述
  右击预览可以查看数据过滤结果。
在这里插入图片描述
  其次,连接删除和重命名算子,将需要的时间列和预测结果列保留,其余列删除。
在这里插入图片描述
  应用完成后右击即可查看处理结果。
在这里插入图片描述
  然后,连接合并算子,将原始数据和预测数据进行合并,分为关键字合并和顺序合并两种,这里使用关键字合并,用于合并的关键字为月份列,合并方式选择左连接。
在这里插入图片描述
  右击预览可以得到合并算子的处理结果。
在这里插入图片描述
  再连接图表分析中的时序图算子,“序列”可以选择多列,当序列为多列时需要配置“每个序列是否单独显示”,
在这里插入图片描述
  右击执行后可以得到可视化结果,右上方可以进行下载等操作,鼠标移动可以查看当前位置的数据信息,下方可以滑动调整数据的时序区间。
在这里插入图片描述
  对于HoltWinters模型的预测结果,直接连接时序图算子进行图表分析,采用序列模式,对香槟销量实际值和预测值进行对比。
在这里插入图片描述
  右击执行得到结果如下所示:
在这里插入图片描述
  采用时间序列模型模式对于HoltWinters模型的预测结果进行图表分析,属性设置如右侧所示。
在这里插入图片描述
  右击执行得到结果,其中,实心点数据表示原始真实值,实线表示对原始数据的拟合数据,空心虚线表示预测数据,阴影边界的上下虚线分别表示置信区间的预测上限和下限。
在这里插入图片描述

四、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

https://sentosa.znv.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1544678.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

论文研读——《Task-Adaptive Negative Envision for Few-Shot Open-Set Recognition》

这是一篇关于少样本开集识别的论文。 目录 论文简介&#xff1a; 名词补充 论文的贡献 负原型生成器 确定动态阈值 共轭训练 补充&#xff1a;元训练过程 共轭训练过程 共轭训练损失 实验设置 总结 论文简介&#xff1a; Task-Adaptive Negative Envision for Few-…

怎么把照片转换成jpg格式?这5种转换方法简单高效

照片是我们记录生活、分享美好的重要方式。然而&#xff0c;不同设备和软件生成的照片格式各异&#xff0c;有时为了兼容性或文件大小的需求&#xff0c;我们需要将照片转换成JPG格式。很多小伙伴不知道怎么转换&#xff0c;下面来给大家分享5种简单高效的转换方法&#xff0c;…

tokenizer简述

知乎&#xff1a;难赋链接&#xff1a;https://zhuanlan.zhihu.com/p/721054525 简述 为了方便计算机处理文本&#xff0c;我们常把文本转化为数值的形式。具体操作是把文本分割成有意义的片段&#xff0c;再把这些片段映射为数组&#xff0c;就能够利用各种深度学习的技术来处…

FastStone Capture屏幕长截图软件注册码

FastStone Capture是一款功能强大的电脑屏幕截图、录像软件&#xff0c;并支持图像编辑、注释及分享等使用功能。FastStone Capture可以免费用30天试用&#xff0c;终身版88元单台电脑终身使用&#xff0c;终身更新。不过网上分享的FastStone Capture注册码似乎也可以正常激活&…

Java开发:文件上传和下载

一、文件上传 使用MultipartFile 类型接收参数&#xff1b; 调用上传有两种方式&#xff1a; 方式一&#xff1a;使用curl命令 curl -F "file/data/filename.txt" http://localhost:8080/upload --verbose方式二&#xff1a;使用html&#xff0c;写一个form表单&…

Mysql基本理解

系列文章目录 Mysql的基础理论知识 目录 系列文章目录 文章目录 一、数据库概述 1.数据库概念 2.数据库的作用 3.什么是关系型数据库&#xff1f; 4.Mysql的优点 5.数据库术语 6.SQL语言分类 二、Mysql安装 三、 Mysql使用 1.登录数据库、退出登录 2.创建、列出数据库 3.选择…

Node.JS有什么用?给谁用?怎么学?通俗易懂,超级详细!

现在&#xff0c;nodejs主要是前端的小伙伴来用的。前端小伙伴也不用说去怎么学node&#xff0c;而是把node当做是一个环境。我们利用这个环境去搭建上层的一些应用&#xff0c;去使用一些工具。就像学习Windows一样&#xff0c;我们没有必要深入了解Windows的每一个细节&#…

【hot100-java】【环形链表 II】

印象题 /*** Definition for singly-linked list.* class ListNode {* int val;* ListNode next;* ListNode(int x) {* val x;* next null;* }* }*/ public class Solution {public ListNode detectCycle(ListNode head) {ListNode fasthea…

建筑工程系列专业职称评审条件大全

我们都知道&#xff0c;职称是分很多系列&#xff0c;今天甘建二主要是从建筑工程系列讲起来&#xff0c;从技术员到初级职称再到中级职称然后到高级职称&#xff0c;各个等级的评审条件给您一一解析&#xff0c;赶紧收藏起来。 ✨技术员1️⃣理工类或建筑工程相关专业大学专科…

视频生成技术分享

文本到视频&#xff08;T2V&#xff09;生成是一种技术&#xff0c;它通过将文本描述转换为视频内容&#xff0c;允许用户根据自然语言生成动态视觉媒体。近年来&#xff0c;扩散模型在这一领域取得了显著进展&#xff0c;但现有模型在处理多个对象和复杂场景时&#xff0c;面临…

android 跑了一个网易云信v1.0的app, 编译的过程中报错Entry name ‘assets/sm2/r.jks‘ collided的处理

1、一开始并没有报这个错误&#xff0c;然后直接就不知道注了什么信息以后&#xff0c;就报错&#xff0c;是因为下面的warning&#xff1a; 2、然后编译的时候就直接报下面的错误&#xff1a; 3、然后我们再之前的注解放开&#xff1a; 这样一切就正常了。 4、那么这个究竟是…

【动态规划】(五)动态规划——子序列问题

动态规划——子序列问题 子序列问题☆ 最长递增子序列&#xff08;离散&#xff09;最长连续递增序列&#xff08;连续&#xff09;最大子序和&#xff08;连续&#xff09;最长重复子数组&#xff08;连续&#xff09;☆ 最长公共子序列&#xff08;离散-编辑距离过渡&#xf…

【动态规划】(四)动态规划——打家劫舍与买卖股票

打家劫舍与买卖股票 打家劫舍问题打家劫舍打家劫舍II打家劫舍III 买卖股票问题买卖股票的最佳时机买卖股票的最佳时机II买卖股票的最佳时机III买卖股票的最佳时机IV最佳买卖股票时机含冷冻期买卖股票的最佳时机含手续费 股票问题总结 打家劫舍问题 给定一个数组&#xff0c;相…

day-59 两两交换链表中的节点

思路 只需将链表两两交换节点即可&#xff0c;如果是奇数个节点&#xff0c;最后一个节点则不用交换 解题过程 可以先自定义一个头结点thead&#xff0c;这样更便于思考交换&#xff0c;最后返回thead.next即可 Code /*** Definition for singly-linked list.* public class…

SAM+无监督学习!能发顶会的高端局组合!idea效果绝佳

学过SAM的朋友都知道&#xff0c;SAM需要对训练数据进行全面的手动标记&#xff0c;每张图像都要超过20分钟...效率有待提升。那么如何解决这个短板&#xff1f;我们考虑SAM无监督学习。 这是因为无监督学习具有无需人工标注数据的特点&#xff0c;通过将两者结合&#xff0c;…

【LeetCode】动态规划—删除并获得点数(附完整Python/C++代码)

动态规划—#740. 删除并获得点数 前言题目描述基本思路1. 问题定义:2. 理解问题和递推关系:3. 解决方法:4. 进一步优化:5. 小总结: 代码实现Python3代码实现Python 代码解释C代码实现C 代码解释 总结: 前言 给你一个整数数组 n u m s nums nums &#xff0c;你可以对它进行一…

DownShift: Tuning Shift Reduction With Reliability for Racetrack Memories

目录 DownShift: Tuning Shift Reduction With Reliability for Racetrack Memories文章摘要&#xff1a;文章的主要贡献包括&#xff1a;文章的结构如下&#xff1a;DownShiftDownShift通过以下方式改进了现有的数据放置策略&#xff1a; GROGU&#xff08;Generating Reliabi…

2024最受欢迎的3款|数据库管理和开发|工具

1.SQLynx&#xff08;原SQL Studio&#xff09; 概述&#xff1a; SQLynx是一个原生基于Web的SQL编辑器&#xff0c;由北京麦聪软件有限公司开发。它最初被称为SQL Studio&#xff0c;后改名为SQLynx&#xff0c;支持企业的桌面和Web数据库管理。SQLynx支持所有流行的数据库&a…

工业一体机实现接口与模块选配

在现代工业自动化和智能制造的浪潮中&#xff0c;工业一体机因其集成化、稳定性高和适应性强的特性而逐渐成为企业生产过程中不可或缺的设备。为了满足不同客户的需求&#xff0c;工业一体机的接口与模块选配功能显得尤为重要。 一、工业一体机的基本概念 工业一体机是将计算、…

跟着B战学习JAVA面试八股文

学习链接&#xff1a;https://www.bilibili.com/video/BV1gm411S7EX/?spm_id_from333.337.search-card.all.click&vd_sourceefbaa07876b231ae3225ba8999116807 创建线程的几种方式&#xff1f; 继承Thread类实现Runnable接口实现Callable接口通过线程池来创建线程 为什么…