神经网络(一):神经网络入门

文章目录

  • 一、神经网络
    • 1.1神经元结构
    • 1.2单层神经网络:单层感知机
    • 1.3两层神经网络:多层感知机
    • 1.4多层神经网络
  • 二、全连接神经网络
    • 2.1基本结构
    • 2.2激活函数、前向传播、反向传播、损失函数
      • 2.2.1激活函数的意义
      • 2.2.2前向传播
      • 2.2.3损失函数、反向传播
      • 2.2.4梯度下降法
    • 2.3模型训练流程
    • 2.4全连接神经网络的Pytorch实现


一、神经网络

1.1神经元结构

  生物神经元结构如下:
在这里插入图片描述

  • 树突:一个神经元往往有多个树突,用于接收传如的信息。
  • 轴突与轴突末梢:一个神经元只有一个轴突,但却有多个轴突末梢用于给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。

生物神经元彼此之间相互连接,不断传递信息而构成生物神经网络。

  神经元结构则是模仿生物神经元提出的一种数学模型,其包含输入、输出与计算功能。其中,输入可类比神经元树突,树突可类比神经元的轴突末梢,计算则可类比为细胞核。经典的神经元模型如下:
在这里插入图片描述
其中包含三个输入 a 1 、 a 2 、 a 3 a_1、a_2、a_3 a1a2a3,每个输入分别对应一个权值,分别为 w 1 、 w 2 、 w 3 w_1、w_2、w_3 w1w2w3。将输入与权值相乘并求和(加权求和)后,再经过Sgn函数计算即可得到输出Z。而神经网络训练算法的目的在于,让权重的值调整到最佳,使得输出结果Z的值最接近真实值。
  一般地,将sum与Sgn函数合并到一个圆圈里,代表神经元的内部计算,便于画出更加复杂的网络结构。并且,一个神经元可引出多个代表输出的有向箭头(具有相同的值),作为下一神经元的输入值并参与运算:
在这里插入图片描述
  神经元模型的意义可以理解为:我们有一个数据,称之为样本。样本有四个属性,其中三个属性已知,一个属性未知,神经网络需要做的就是通过三个已知属性预测未知属性。具体办法就是使用神经元的公式进行计算。三个已知属性的值是 a 1 、 a 2 、 a 3 a_1、a_2、a_3 a1a2a3,未知属性的值是z。并且,已知的属性往往称之为特征,未知的属性往往称之为目标。假设特征与目标之间确实是线性关系,并且我们已经得到表示这个关系的权值 w 1 、 w 2 、 w 3 w_1、w_2、w_3 w1w2w3。那么,就可以通过神经元模型预测新样本的目标。

1.2单层神经网络:单层感知机

  单层神经网络是由两层神经元(输入层、输出层)组成的神经网络,也被称之为感知机模型。其结构如下:
在这里插入图片描述
在感知机中有输入层、输出层两个层次:

  • 输入层:只负责传输数据,不做计算。
  • 输出层:需要对前面一层的输入进行计算,并将结果输出。

其中, w i , j w_{i,j} wi,j表示前一层第 j j j个神经元输入到后一层第 i i i神经元时,前一层神经元的输出对应的权值。观察 z 1 、 z 2 z_1、z_2 z1z2公式,实际可看作是一对线性代数方程组,因此可以用矩阵乘法来表示。系数矩阵 w w w是两行三列矩阵:
[ w 1 , 1 w 1 , 2 w 1 , 3 w 2 , 1 w 2 , 2 w 2 , 3 ] (3) \left[ \begin{matrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ \end{matrix} \right] \tag{3} [w1,1w2,1w1,2w2,2w1,3w2,3](3)
同理,输入的是由 a 1 、 a 2 、 a 3 a_1、a_2、a_3 a1a2a3组成的列向量:
[ a 1 a 2 a 3 ] (3) \left[ \begin{matrix} a_1 \\ a_2 \\ a_3 \end{matrix} \right] \tag{3} a1a2a3 (3)
用g()表示输入加权和后经过的激活函数,则有:
z = g ( w ∗ a ) z=g(w*a) z=g(wa)

1.3两层神经网络:多层感知机

  两层神经网络在单层神经网络的基础上增加了一个中间层(隐藏层),此时,隐藏层和输出层都是计算层。中间层结构如下:
在这里插入图片描述
输出层的结果由隐藏层两个神经元的输入经过加权求和、激活函数计算后才可得到,此时即引入了第二个参数矩阵 w ( 2 ) w^{(2)} w(2)
在这里插入图片描述
同样也可使用矩阵运算来概括整个网络的运算流程:
z = g ( 2 ) ( a ( 2 ) ∗ w ( 2 ) ) a 1 ( 2 ) = g 1 ( 1 ) ( a ( 1 ) ∗ w 1 ( 1 ) ) a 2 ( 2 ) = g 2 ( 1 ) ( a ( 1 ) ∗ w 2 ( 1 ) ) z=g^{(2)}(a^{(2)}*w^{(2)})\\ a_1^{(2)}=g^{(1)}_1(a^{(1)}*w^{(1)}_1)\\ a_2^{(2)}=g^{(1)}_2(a^{(1)}*w^{(1)}_2) z=g(2)(a(2)w(2))a1(2)=g1(1)(a(1)w1(1))a2(2)=g2(1)(a(1)w2(1))
  需要说明的是,上文对神经网络的结构图的讨论中都没有提到偏置节点(bias unit)。事实上,这些节点是默认存在的,其本质是存储值永远为一个常量的单元。在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元,在引入偏置值后,神经元基本模型变为:
在这里插入图片描述
数学表达式:
在这里插入图片描述
  同样的,将偏置值加入到两层神经网络当中得到:
在这里插入图片描述

1.4多层神经网络

  在两层神经网络的输出层后面,继续添加层次,使得原来的输出层变成隐藏层,新加的层次成为新的输出层,从而构建多层神经网络。简单的多层神经网络如下:
在这里插入图片描述
输出z的推导公式为:
z = g ( 3 ) ( a ( 3 ) ∗ w ( 3 ) ) a ( 3 ) = g ( 2 ) ( a ( 2 ) ∗ w ( 2 ) ) a ( 2 ) = g ( 1 ) ( a ( 1 ) ∗ w ( 1 ) ) z=g^{(3)}(a^{(3)}*w^{(3)})\\ a^{(3)}=g^{(2)}(a^{(2)}*w^{(2)})\\ a^{(2)}=g^{(1)}(a^{(1)}*w^{(1)}) z=g(3)(a(3)w(3))a(3)=g(2)(a(2)w(2))a(2)=g(1)(a(1)w(1))
  从图中可以看出,参数矩阵 w ( 1 ) 、 w ( 2 ) 、 w ( 3 ) w^{(1)}、w^{(2)}、w^{(3)} w(1)w(2)w(3)分别有6、4、6个参数,即整个神经网络共有16个参数:
在这里插入图片描述
假设我们将中间层的节点数做一下调整。第一个中间层改为3个单元,第二个中间层改为4个单元。经过调整以后,整个网络的参数变成了33个:
在这里插入图片描述

二、全连接神经网络

2.1基本结构

  全连接神经网络是指第 N 层的每个神经元和第 N-1 层的所有神经元相连,即第 N-1 层神经元的输出就是第 N 层神经元的输入。整体结构由三部分组成:
在这里插入图片描述

  • 输入层:输入的数据,即向量(矩阵)组 x 1 、 x 2 、 x 3 x_1、x_2、x_3 x1x2x3,可以是图片、矩阵等。
  • 隐藏层:对输入数据进行特征提取,对于不同的输入神经单元设置不同的权重与偏置,从而影响神经单元对输入信息敏感程度,可以形成输出结果的偏向)。
  • 输出层:输出的结果,即 y 1 、 y 2 、 y 3 y_1、y_2、y_3 y1y2y3,可以是分类结果等。

  通过输入层激活信号,再通过隐藏层提取特征,不同隐藏层神经单元对应不同输入层的神经单元,其权重和自身偏置均可能不同。由隐藏层将信号
经计算再传递到输出层,最后由输出层输出信号。例如,识别一个4x3的图像,下例中采用了12 神经元来对应 4x3 个像素点进行输入,在隐藏层中使用另外三个神经单元进行特征提取,最后输出层再使用两个神经节点标记识别结果是 0 或 1(分别表示黑与白):
在这里插入图片描述

  • 对于输入层,十二个神经单元对应 4 * 3 像素值(0或1),如果该像素是白的,则对应神经元兴奋(对应1),否则静息(对应0)。
  • 对于输出层的两个节点,如果识别结果偏向0,那么第一个节点兴奋度会高于第二个节点,反之识别结果偏向1。
  • 对于隐藏层,每一个节点会对输入层的兴奋有不同的接收权重,从而更加偏向于某种识别模式。例如,隐藏层第一个神经单元对应下图模式A,也就是对应输入层 4、7号神经单元接收权重比较高,对其他神经单元接受权重比较低,如果超过了神经单元自身的偏置(阈值)则会引发隐藏层的兴奋,向输出层传递兴奋信息,隐藏层其他神经单元同理。

在这里插入图片描述
  事实上,神经网络模型的意义就在于找到最为合适的参数w、b,使得预测结果与真实情况最为接近。

2.2激活函数、前向传播、反向传播、损失函数

2.2.1激活函数的意义

  由上文可知,每一层的参数运算均可表示为矩阵运算:
a [ 1 ] = w [ 1 ] ∗ x + b [ 1 ] a^{[1]}=w^{[1]}*x+b^{[1]} a[1]=w[1]x+b[1]

  • a [ 1 ] a^{[1]} a[1]:上一层神经元输出值的与系数矩阵、偏置的加权和,是本层神经元的输出值。
  • b [ 1 ] b^{[1]} b[1]`:系数矩阵。
  • x x x:上一层神经元的输出值。
  • b [ 1 ] b^{[1]} b[1]:偏置。

若直接将 a [ 1 ] a^{[1]} a[1]作为下一隐藏层的输入,并继续只进行线性运算(仅含有加法、数量乘法运算),即 a [ 2 ] = w [ 2 ] ∗ a [ 1 ] + b [ 2 ] a^{[2]}=w^{[2]}*a^{[1]}+b^{[2]} a[2]=w[2]a[1]+b[2],则会出现“无效的隐藏层”。数学推导如下:
在这里插入图片描述
可见,此时 a [ 2 ] a^{[2]} a[2] 相当于是一组新参数 w ′ 、 b ′ w^{'}、b^{'} wb与输入向量 x x x运算得到,则原先的 a [ 1 ] a^{[1]} a[1]隐藏层退化,神经网络仍只含有一层隐藏层(多层线性操作等价于一层线性操作,多层神经网络退化为最简单的单层神经网络模型)。
  事实上,真实世界有些原始数据本身就是线性不可分的,必须要对原始空间进行一定的非线性操作,此时就必须使用非线性的激活函数参与运算来为神经网络引入非线性性,否则多层神经网络就没有意义。
  除此之外,激活函数有助于将神经元输出的值限制在我们要求的某个限制内。 因为激活函数的输入是 W ∗ x + b W * x + b Wx+b,如果不限制在某个值上,则此值的变动范围会非常大,此时可使用激活函数将输出值限定在一个范围(常用0~1),来表示神经元的兴奋程度(0表静默,1表活跃)。

2.2.2前向传播

  前向传播,是指将数据特征作为输入,输入到隐藏层,将数据特征和对应的权重相乘同时再和偏置进行求和,将计算的结果通过激活函数进行激活,激活函数输出值作为下一层神经网络层的输入再和对应的权重相乘同时和对应的偏置求和,再将计算的结果通过激活函数进行激活,不断重复上述的过程直到神经网络的输出层,最终得到神经网络的输出值。
  简单来说,输入数据输入到神经网络并通过隐藏层进行运算,最后输出结果的过程,就是神经网络的前向传播。一个简单的神经网络:
在这里插入图片描述
隐藏层两个神经元的计算:
在这里插入图片描述
输出层神经元的计算:
在这里插入图片描述
其中, w 11 、 w 13 、 b 1 、 w 12 、 w 14 、 b 2 、 w 21 、 w 22 、 b 3 w_{11}、w_{13}、b_1、w_{12}、w_{14}、b_2、w_{21}、w_{22}、b_3 w11w13b1w12w14b2w21w22b3是模型中所包含的权重和偏置,而训练模型的目的在于,找到一种方法可以求出准确的 w w w b b b,使得前向传播计算出来的预测值 y y y无限接近于真实值。

2.2.3损失函数、反向传播

【损失函数】
  在模型确定后(本质是确定了一组参数),就希望训练结果接近于真实值,此时可设置损失函数来计算前向传播的输出值和真实的label值之间的损失误差,来对模型性能进行评估。目前常见的损失函数有均方误差、交叉熵误差。对于不同类型的问题,如:

  • 回归问题:输出的是物体的值,如预测当前温度等,是对真实值的一种逼近预测,输出值是连续的。
  • 分类问题:输出的是物体所属的类别,输出值是离散的。

对于不同类型的问题就有着不同的常用损失函数。

【反向传播】
  事实上,模型训练的流程为,将数据输入模型并通过前向传播得到输出数据,利用损失函数计算输出数据与真实数据之间的误差,并利用反向传播更新参数(这一过程需使用梯度)使损失函数变低(神经网络的输出和真实值更加逼近),最后不断重复这一过程,直到损失函数接近于0。
  但是实际项目中,由于数据中存在噪声,因此损失值在参数不断的更新下会不断接近0,但是不可能等于0,所以我们往常将模型的训练轮次和损失值变化画图显示出来,如果损失值在一定的轮次后趋于平缓不再下降,那么就认为模型的训练已经收敛了。例如:
在这里插入图片描述

2.2.4梯度下降法

  梯度下降法是最为常见的反向传播更新参数的算法,具体步骤为:

  • 1.计算损失:使用损失函数计算预测值与真实值之间的误差。例如,使用均方误差(MSE)或交叉熵损失。
  • 2.误差反向传播:从输出层开始,计算损失相对于每个参数的梯度。通过链式法则,将梯度逐层传递回输入层。
  • 3.参数更新:使用优化算法(如梯度下降)更新每个参数,使损失最小化。参数更新公式如下:

在这里插入图片描述
其中, W o l d W_{old} Wold是更新前的权重, W n e w W_{new} Wnew是更新后的权重, η η η是学习率, ∂ l ∂ w \frac{\partial l}{\partial w} wl是损失函数相对于权重的梯度。

【梯度下降法原理】

在这里插入图片描述
梯度下降法正是基于此思想,只是从追求不同方向上最陡的山体梯度,变为追求如何修改参数可使损失函数值下降最快。反之,就是梯度上升法。需要注意的是,梯度下降法只是一种局部搜索优化算法,即它无法保证得到全局最优解。因此,有时需要运用其他优化算法来搜索全局最优解。
在这里插入图片描述

1.一元函数:模型仅有一个参数
在这里插入图片描述
  函数 J ( w ) J(w) J(w)即为损失函数,横坐标 w w w表示模型参数,问题转化为如何求出函数极小值处参数 w w w的值。
思路:在当前位置求偏导,即梯度,负梯度不断增大接近零的方向( w w w的变化方向),就是不断逼近函数极小值的方向。有时得到的是函数最小值的局部最优解,如果损失函数是凸函数,梯度下降法得到的解就是全局最优解。
  一元函数的梯度(导数)公式:
在这里插入图片描述
  假设损失函数为 J ( θ ) J(θ) J(θ),其中 θ θ θ是模型参数,从一个初始点 θ 0 θ_0 θ0开始迭代,每次迭代更新 θ θ θ的值,直至损失函数值下降到一定程度,或者达到固定次数的迭代次数。每次迭代的更新公式:
在这里插入图片描述
其中, α α α是学习率,控制每一步迭代的步长。学习率太小会导致收敛速度慢,而学习率太大会导致算法发散。因此,学习率是梯度下降法中需要调整的一个超参数。
  注意,超参数是指算法运行之前手动设置的参数,用于控制模型的行为和性能。这些超参数的选择会影响到模型的训练速度、收敛性、容量和泛化能力等方面,常见的超参数如学习率、迭代次数、正则化参数、隐藏层的神经元数量等。

2. 多元函数:模型含多个参数
  对于不同参数 θ i θ_i θi,其梯度定义为:
在这里插入图片描述
其中,函数 J ( θ ) J(θ) J(θ)即为损失函数,此时每次迭代的更新公式为:
在这里插入图片描述
直至损失函数值下降到一定程度,或者达到固定次数的迭代次数时,算法终止。
【梯度下降法案例】
在这里插入图片描述
初始误差(使用均方误差函数) J ( x 1 ) = ( 2 − 1.731 ) 2 / 2 J(x_1)=(2-1.731)^2/2 J(x1)=(21.731)2/2

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
完成一轮更新后,损失函数的值更加逼近0,代表预测结果更加接近真实情况。

2.3模型训练流程

  在完成上文的学习后,可大致梳理出模型训练的大致流程:

  • 1.以 N N N份的输入数据 X X X及其对应的结果 Y Y Y(同样为 N N N)份来搭建模型,常见模型如卷积神经网络。
  • 2.开始训练,并设置模型训练的超参数,如学习率、训练轮次等。
    • 2.1输入数据集 X X X,前向传播得到训练结果 Y ′ Y' Y
    • 2.2根据真实结果 Y Y Y计算损失函数 J ( Θ ) J(Θ) J(Θ),其中,训练结果 Y ′ Y' Y是关于参数集合 Θ Θ Θ的函数。
    • 2.3利用梯度下降法进行反向传播,更新参数值,并重新进行预测。
    • 2.4重复上述过程直到满足终止条件,从而得到模型。
  • 3.利用模型对测试集进行测试,满足条件即可正常使用,否则调整超参数、模型类别等,重新训练模型。

2.4全连接神经网络的Pytorch实现

【1.导入相关包】

#1.导入相关包
import torch
import torch.nn as nn
import copy
import time
from torchsummary import summary
import torch
from torch import nn
from torchvision.datasets import FashionMNIST
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import math
import torch.utils.data as Datadevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

【2.加载FashionMNIST数据集】

#2.加载FashionMNIST数据集
##定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),  #将PIL图像或NumPy ndarray 转换为FloatTensor,并在[0.,1.]范围内缩放图像的像素值。transforms.Normalize((0.5,), (0.5,))  #对张量图像进行标准化,给出的均值(mean)和标准差(std)应用于所有三个通道。这里均值和标准差设置为0.5,意味着[0,1]的输入将被标准化到[-1,1]。对于灰度图(如MNIST),只需要给出一个通道的均值和标准差。
])
##加载训练集、测试集
train_data = FashionMNIST(root="./", train=True, transform=transform, download=True)
test_data = FashionMNIST(root="./", train=False, transform=transform, download=True)
##构建训练集、测试集加载器
train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = Data.DataLoader(dataset=test_data, batch_size=64, shuffle=False)
##可视化训练数据
def show_img(train_loader,batch_size):for step, (x, y) in enumerate(train_loader):if step > 0:  # 恒成立breakbatch_x = x.squeeze().numpy()batch_y = y.numpy()class_label = train_data.classes# 可视化fig = plt.figure(figsize=(int(math.sqrt(batch_size)), int(math.sqrt(batch_size))))for i in range(batch_size):ax = fig.add_subplot(int(math.sqrt(batch_size)), int(math.sqrt(batch_size)), i + 1, xticks=[], yticks=[])ax.imshow(batch_x[i], cmap=plt.cm.binary)ax.set_title(class_label[batch_y[i]])
show_img(train_loader,64)

在这里插入图片描述
【3.建立全连接神经网络模型】

#3.建立全连接神经网络模型
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()#784=28*28self.fc1 = nn.Linear(784, 128) self.fc2 = nn.Linear(128, 128)  #预测结果为10个类别之一self.output = nn.Linear(128, 10) #定义前向传播过程def forward(self, x):x = torch.relu(self.fc1(x))x = torch.relu(self.fc2(x))x = self.output(x)return x
model=SimpleNN().to(device)
print(summary(model,input_size=(784,)))

在这里插入图片描述
【4.训练模型】

#4.训练模型
##使用Adam优化器,设置学习率为0.001,model.parameters()将模型中所有需要被训练的参数传入优化器中
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
##使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()
##设置训练轮次
epoch = 100
def train_model(model, train_loader, optimizer, criterion, epoch, device):for e in range(epoch):start_time=time.time()for images, labels in train_loader:images = images.to(device)labels = labels.to(device)images = images.view(-1, 28*28)  #梯度清除optimizer.zero_grad()#前向传播模型预测结果output = model(images)#计算预测结果与实际值的损失函数值loss = criterion(output, labels)#反向传播,计算所有模型参数关于损失函数的梯度loss.backward()#更新参数optimizer.step()end_time=time.time()print("轮次{} 用时 : {}".format(e+1, end_time-start_time))
train_model(model, train_loader, optimizer, criterion, epoch, device)

在这里插入图片描述
【5.测试模型】

#5.测试模型
def evaluate_model(model, test_loader, device):model.eval()total_correct = 0total = 0with torch.no_grad():for images, labels in test_loader:images = images.view(-1, 28*28).to(device)output = model(images)_, predicted = torch.max(output.data, 1)total += labels.size(0)total_correct += (predicted == labels.to(device)).sum().item()print(f'Accuracy: {100 * total_correct / total:.2f}%')
evaluate_model(model, test_loader, device)

在这里插入图片描述
【6.查看模型结构】

#6.查看模型结构
torch.save(model,'./SimpleNN.pth')
import netronmodelData = './SimpleNN.pth'  # 定义模型数据保存的路径
netron.start(modelData)  # 输出网络结构

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1543090.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

SSCMS 插件示例 一插件创建及插件菜单

SSCMS 插件示例下载 1、工程创建过程,如下图所示。 2、工程路径和工程命名,如下图所示。 bjxingch作者 IPluginCUDR插件名称 3、选择框架,如下图所示。 4、使用NuGet安装 SSCMS和Datory,如下图所示。

【软件工程】状态转换图 其他图形工具

状态转换图 一、定义 二、符号表示 其他图形工具 一、层次方框图 二、Warmer图 三、IPO图 例题 选择题

熟练的Java程序员:掌握核心技能,引领技术潮流

Java,作为一门成熟且广泛应用的编程语言,对于程序员来说,不仅是一种技能,更是一种职业态度的体现。一个熟练的Java程序员,应该具备哪些技术呢?本文将为您揭晓答案。 1. 扎实的Java基础 熟练掌握Java语言的…

《深入理解JAVA虚拟机(第2版)》- 第13章 - 学习笔记【终章】

第13章 线程安全与锁优化 13.1 概述 面向过程的编程思想 将数据和过程独立分开,数据是问题空间中的客体,程序代码是用来处理数据的,这种站在计算机角度来抽象和解决问题的思维方式,称为面向对象的编程思想。 面向对象的编程思想…

想从事大模型?一大波工作岗位等你选!

技术类岗位 您可从事:算法工程师,研发工程师。 管理类岗位 您可从事:AI项目经理、AI产品经理、AI销售、AI解决方案。 01 技术类岗位 算法工程师 大模型算法工程师的职位通常要求求职者具备以下几方面的能力和经验。 通用技能教育背景…

大健康管理系统|健康综合咨询问诊平台设计与实现(源码+数据库+文档)

大健康管理系统目录 目录 健康综合咨询问诊平台设计与实现 一、前言 二、系统功能设计 三、系统实现 5.1用户信息管理 5.2 医生信息管理 5.3科室信息管理 5.1新闻信息管理 四、数据库设计 1、实体ER图 2、具体的表设计如下所示: 五、核心代码 六、论文…

干货|生成式人工智能大模型备案详细办理资料清单

我以刚通过的大模型备案提交的材料清单给大家详细讲一讲 刚通过的大模型备案材料清单 1、安全评估报告 安全评估报告是大模型备案过程中的一个重要关键部分,它需由专业机构或团队完成,全面评估大模型在语料处理、模型训练、服务提供等环节中的安全性。…

vue3ScrollSeamless滚动如何给子元素添加点击事件:事件委托

页面布局如上截图 下面是方法 function parentClick(e) {if (e.target.tagName A) {router.push({path: /noticeDetails,query: {id: e.target.dataset.eid}});} }使用的时候,可以打印一下方法里面的e,加深理解

基于51单片机的电机控制和角度检测

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机,采用滑动变阻器连接ADC0832数模转换器模拟角度传感器,然后通过LCD1602显示数值,然后按键按下不动,电机正转,松开停止。第二…

红外绝缘子数据集

红外绝缘子数据集,绝缘子旋转框检测 电气工程专业研究可用 电力领域稀有红外图像数据集 红外图像总数5000多张,txt格式,可直接用于yolo训练 红外绝缘子数据集 (Infrared Insulator Dataset, IID) 数据集描述 IID是一个专为电气工程专业研究…

react中解析markdown文本

背景 产品想把从某个地方复制出来的markdown文本,保存下来,并且在前端这边展示的时候,按照对应的格式展示 工具 markedhighlight.jsmarked-highlight 原来的marked版本,是可以直接处理高亮配置,但是后续更新为了轻量…

耦合微带线单元的网络参量和等效电路公式推导

文档下载链接:耦合微带线单元的网络参量和等效电路资源-CSDN文库https://download.csdn.net/download/lu2289504634/89583027笔者水平有限,错误之处欢迎留言! 一、耦合微带线奇偶模详细推导过程 二、2,4端口开路 三、2端口短路、3端口开路 四…

Apple Intelligence预计会在iOS 18.1和iOS 18.4之间按此顺序推出

本月早些时候 iOS 18 已公开发布,但首批 Apple Intelligence 功能要等到 10 月份 iOS 18.1 发布后才可以使用。Apple Intelligence 功能将继续在 iOS 18.2 及更高版本中推出,预计路线图如下,出自 Apple 网站和传闻。 Apple Intelligence 需要…

electron-vite使用vue-i18n,ts 检查报错上不存在属性“$t”

问题: electron-vite使用vue-i18n,ts类型检查报错,但实际运行没有问题 解决方案: 1. 在electron-vite渲染端代码src目录下,增加 vue-i18n.d.ts 文件,添加如下内容: /* eslint-disable */ im…

【d47_2】【Java】【力扣】1791.找出星型图的中心节点

思路 直接判断 edges[0][0] edges[0][1] edges[1][0] edges[1][1] 谁重复了 例如&#xff1a; [ [1,2] [2,3] ....],那么中心节点一定是2 代码 class Solution {public int findCenter(int[][] edges) {for (int i0;i<1;i){if (edges[1][0]edges[0][i]) {return edg…

Java/Spring项目的包开头为什么是com?

Java/Spring项目的包开头为什么是com&#xff1f; 下面是一个使用Maven构建的项目初始结构 src/main/java/ --> Java 源代码com.example/ --->为什么这里是com开头resources/ --> 资源文件 (配置、静态文件等)test/java/ --> 测试代码resourc…

3D建模:Agisoft Metashape Professional 详细安装教程分享 Mac/win

Agisoft Metashape中文版&#xff08;以前称为 PhotoScan&#xff09;是一款独立软件产品&#xff0c;可对数字图像进行摄影测量处理并生成 3D 空间数据&#xff0c;用于 GIS 应用程序、文化遗产文献和视觉效果制作以及各种比例的物体的间接测量。 明智地实施数字摄影测量技术…

Windows 离线安装显示驱动

下载驱动人生&#xff0c;查看需要安装的驱动版本 驱动人生 驱动人生官网-显卡驱动_打印机驱动_网卡驱动_声卡驱动等驱动程序下载及检测平台驱动人生是一款提供电脑驱动下载和安装自动化的软件&#xff0c;通过驱动人生可一键安装显卡驱动、网卡驱动、声卡驱动、打印机驱动、…

Unity中Rigidbody 刚体组件和Rigidbody类是什么?

Rigidbody 刚体组件 Rigidbody 是 Unity 中的一个组件&#xff0c;它可以让你的游戏对象像真实世界中的物体一样移动和碰撞。想象一下&#xff0c;你有一个小球&#xff0c;你希望它像真实世界中的球一样滚动、弹跳和碰撞&#xff0c;那么你就可以给这个小球添加一个 Rigidbod…

R语言中的shiny框架

R语言中的shiny框架 Shiny 的基本概念基本用法示例常见用法示例1. 输入控件2. 输出控件3. 动态 UI4. 数据传递和反应式编程 高级功能1. 使用 shinyjs2. 使用 shinythemes Shiny 是一个 R 语言的框架&#xff0c;用于构建交互式的网页应用&#xff0c;可以让用户以最少的 HTML、…