从图像处理到字符识别:基于STM32与C语言的车牌识别系统实现

一、项目概述

本项目旨在通过软硬件结合的方式,设计并实现一个基于STM32的车牌识别系统实验。该系统主要用于自动识别车辆的车牌信息,广泛应用于智能交通管理、停车场管理等领域。

技术栈关键词

  • 硬件:STM32单片机、OV7670摄像头、TFT显示屏

  • 软件:C语言、图像处理算法

  • 识别流程:图像预处理、二值化处理、车牌区域识别、字符分割、字符识别

二、系统架构

系统架构设计

本系统的硬件架构主要包括STM32单片机作为控制核心,OV7670摄像头用于图像采集,TFT显示屏用于结果展示。系统的通信协议采用I2C和SPI,以实现各组件之间的有效数据传输。

以下是系统架构图:

I2C
SPI
UART
STM32单片机
OV7670摄像头
TFT显示屏
PC端调试

组件选择

  1. STM32单片机:选择STM32F103系列,性能稳定,适合实时图像处理。

  2. OV7670摄像头:具备较好的图像采集能力,支持640x480分辨率。

  3. TFT显示屏:用于显示识别结果,选择适合STM32的SPI接口屏幕。

三、环境搭建和注意事项

环境搭建

  1. 硬件连接:

    • 将OV7670摄像头与STM32通过I2C接口连接。

    • 将TFT显示屏与STM32通过SPI接口连接。

    • 确保电源供应稳定,避免因电压不稳造成的硬件损坏。

  2. 软件环境:

    • 开发环境使用Keil uVision或STM32CubeIDE。

    • 安装必要的库文件,如STM32的HAL库和相关图像处理库。

注意事项

  • 确保图像采集环境光线适中,避免强光和阴影影响识别效果。

  • 在进行字符分割时,注意车牌的清洁度,脏污会影响识别准确率。

四、代码实现过程

在本节中,我们将详细介绍基于STM32的车牌识别系统中各个模块的代码实现过程,包括图像预处理、二值化处理、车牌区域识别、字符分割和字符识别。每个模块的代码示例将配以详细的代码说明,以确保逻辑清晰、易于理解和维护。

1. 图像预处理模块

1.1 代码实现

图像预处理的主要目的是通过高斯滤波去除图像中的噪声,从而提高后续处理的准确性。以下是高斯滤波的实现代码。

#include <stdint.h>
#include <math.h>#define KERNEL_SIZE 5
#define OFFSET (KERNEL_SIZE / 2)// 高斯滤波核,包含5x5的权重
const float gaussianKernel[KERNEL_SIZE][KERNEL_SIZE] = {{1,  4,  6,  4,  1},{4, 16, 24, 16,  4},{6, 24, 36, 24,  6},{4, 16, 24, 16,  4},{1,  4,  6,  4,  1}
};// 高斯滤波函数
void GaussianBlur(uint8_t* inputImage, uint8_t* outputImage, int width, int height) {int sum, x, y, i, j;int kernelSum = 256; // 高斯核的归一化因子for (y = 0; y < height; y++) {for (x = 0; x < width; x++) {sum = 0;// 应用高斯滤波核for (i = -OFFSET; i <= OFFSET; i++) {for (j = -OFFSET; j <= OFFSET; j++) {int pixelX = x + j;int pixelY = y + i;// 确保不超出图像边界if (pixelX >= 0 && pixelX < width && pixelY >= 0 && pixelY < height) {sum += inputImage[pixelY * width + pixelX] * gaussianKernel[i + OFFSET][j + OFFSET];}}}outputImage[y * width + x] = sum / kernelSum; // 除以归一化因子}}
}

1.2 代码说明

  • 高斯滤波核:定义了一个5x5的高斯核,具体的权重值根据高斯函数的离散化版本计算得出。该核能够有效地平滑图像,去除高频噪声。

  • 边界处理:在计算每个像素的值时,函数确保对输入图像的边界进行有效处理,避免访问越界。

  • 归一化因子:通过将加权和除以一个固定的归一化因子(这里为256),确保输出图像的像素值在合理范围内。

2. 二值化处理模块

2.1 代码实现

二值化处理将图像转换为黑白图像,以便于后续的特征提取。以下是二值化处理的实现代码。

// 二值化处理函数
void BinarizeImage(uint8_t* inputImage, uint8_t* outputImage, int width, int height, int threshold) {for (int i = 0; i < width * height; i++) {outputImage[i] = (inputImage[i] > threshold) ? 255 : 0; // 大于阈值则为白色,小于则为黑色}
}

2.2 代码说明

  • 输入输出:该函数接受三参数:输入图像、输出图像和图像的宽度和高度。阈值是用来区分前景和背景的关键参数。

  • 二值化逻辑:通过比较每个像素值与阈值的大小,实现简单的二值化处理,结果为255(白色)或0(黑色)。

3. 车牌区域识别模块

3.1 代码实现

车牌区域识别通过查找图像中的特定边缘来确定车牌的位置。以下是车牌区域识别的实现代码。

// 车牌区域识别函数
void FindLicensePlateRegion(uint8_t* binaryImage, Rect* plateRegion, int width, int height) {int left = width, right = 0, top = height, bottom = 0;bool found = false;for (int y = 0; y < height; y++) {for (int x = 0; x < width; x++) {// 如果找到白色像素(车牌)if (binaryImage[y * width + x] == 255) {found = true;if (x < left) left = x;       // 更新最左边界if (x > right) right = x;     // 更新最右边界if (y < top) top = y;          // 更新最上边界if (y > bottom) bottom = y;    // 更新最下边界}}}// 如果找到车牌区域,更新车牌的矩形区域if (found) {plateRegion->x = left;plateRegion->y = top;plateRegion->width = right - left + 1;plateRegion->height = bottom - top + 1;} else {// 如果没有找到车牌区域,设置为无效值plateRegion->x = -1;plateRegion->y = -1;plateRegion->width = 0;plateRegion->height = 0;}
}

3.2 代码说明

  • 矩形结构体:定义了一个 Rect 结构体来存储车牌区域的坐标和大小。

  • 区域查找逻辑:通过遍历二值化图像,查找所有的白色像素(255),并根据这些像素更新车牌的边界(left、right、top、bottom)。

  • 结果更新:找到车牌区域后,将其坐标和尺寸填入 plateRegion 结构体。如果未找到车牌,设置区域为无效值。

4. 字符分割模块

4.1 代码实现

字符分割的目的是从车牌区域中提取出单个字符。采用上下边缘投影法来完成这一任务。以下是字符分割的实现代码。

#define MAX_CHARACTERS 10// 字符结构体
typedef struct {Rect boundingBox;
} Character;// 字符分割函数
void SegmentCharacters(uint8_t* binaryImage, Rect plateRegion, Character* characters, int* charCount, int width) {int topProjection[plateRegion.height];int bottomProjection[plateRegion.height];memset(topProjection, 0, sizeof(topProjection));memset(bottomProjection, 0, sizeof(bottomProjection));// 计算上下边缘投影for (int y = plateRegion.y; y < plateRegion.y + plateRegion.height; y++) {for (int x = plateRegion.x; x < plateRegion.x + plateRegion.width; x++) {if (binaryImage[y * width + x] == 255) {topProjection[y - plateRegion.y]++;bottomProjection[y - plateRegion.y] = 1; // 标记字符存在}}}// 根据投影信息分割字符*charCount = 0; // 初始化字符计数for (int i = 0; i < plateRegion.height; i++) {if (bottomProjection[i] == 1) {if (*charCount < MAX_CHARACTERS) {characters[*charCount].boundingBox.x = plateRegion.x; // 设定x坐标characters[*charCount].boundingBox.y = plateRegion.y + i; // 设定y坐标characters[*charCount].boundingBox.width = plateRegion.width; // 设定宽度characters[*charCount].boundingBox.height = 1; // 设定高度为1(*charCount)++;}}}
}

4.2 代码说明

  • 字符结构体:定义了一个 Character 结构体,包含一个 boundingBox,用于存储每个字符的边界框。

  • 边缘投影:通过遍历车牌区域的每一行,统计每行中白色像素的数量(即字符的存在),将结果存储在 topProjectionbottomProjection 数组中。这里的 topProjection 记录每行的白色像素数,而 bottomProjection 标记字符的存在。

  • 字符分割逻辑:在遍历结束后,依据 bottomProjection 数组的信息,确定字符的边界。若某行存在字符(即值为1),则将该行的边界信息填入 characters 数组,并增加字符计数。

5. 字符识别模块

5.1 代码实现

字符识别模块负责识别分割出来的字符。为了简化实现,这里我们采用模板匹配法作为字符识别的基本算法。以下是字符识别的实现代码。

#include <string.h>#define NUM_CHARACTERS 36 // 假设我们只识别数字和字母// 假设模板字符
const uint8_t characterTemplates[NUM_CHARACTERS][CHARACTER_HEIGHT][CHARACTER_WIDTH] = {// '0'到'9'和'A'到'Z'的字符模板// 这里省略具体模板数据
};// 字符识别函数
char RecognizeCharacter(uint8_t* characterImage, int width, int height) {int bestMatchIndex = -1;int bestMatchScore = 0;// 遍历所有模板进行匹配for (int i = 0; i < NUM_CHARACTERS; i++) {int matchScore = 0;// 逐像素比较for (int y = 0; y < height; y++) {for (int x = 0; x < width; x++) {if (characterImage[y * width + x] == characterTemplates[i][y][x]) {matchScore++; // 匹配得分}}}// 更新最佳匹配if (matchScore > bestMatchScore) {bestMatchScore = matchScore;bestMatchIndex = i;}}// 返回识别的字符if (bestMatchIndex >= 0) {return (bestMatchIndex < 10) ? '0' + bestMatchIndex : 'A' + (bestMatchIndex - 10);}return '?'; // 如果没有匹配,返回未知字符
}

5.2 代码说明

  • 字符模板:定义了一个二维数组 characterTemplates,存储了所有待识别字符的模板。模板的维度为 CHARACTER_HEIGHT x CHARACTER_WIDTH,这里应根据实际字符的大小定义。

  • 匹配逻辑:使用双重循环遍历每个模板,逐像素与待识别字符图像进行比较。每次匹配成功则得分加一,最终得到最佳匹配的字符索引。

  • 返回识别结果:根据匹配的索引返回对应的字符,若无匹配结果则返回 ‘?’ 作为未知字符标识。

五、项目总结

本项目成功设计并实现了一个基于STM32的车牌识别系统,通过软硬件结合的方式,展示了工程技术人员在实践能力培养方面的重要性。系统的主要目标是自动识别车辆的车牌信息,并具备良好的实时处理能力,适用于智能交通管理、停车场管理等多个领域。

主要功能

  1. 图像采集:利用OV7670摄像头实时采集车辆的图像,为后续处理提供基础数据。

  2. 图像预处理:通过高斯滤波有效降低图像噪声,提高图像质量,为二值化处理做准备。

  3. 二值化处理:将预处理后的图像转换为二值图像,简化后续的特征提取与分析。

  4. 车牌区域识别:查找图像中的车牌区域,准确定位车牌的边界,为字符分割提供依据。

  5. 字符分割:根据车牌区域的信息,将车牌中的字符分割开来,为字符识别做准备。

  6. 字符识别:采用模板匹配法对分割出的字符进行识别,最终输出识别结果。

技术创新点

  • 软硬件结合:通过STM32单片机与OV7670摄像头、TFT显示屏的有效结合,实现了实时图像处理与展示。

  • 高效的图像处理算法:采用高斯滤波和上下边缘投影法相结合的方式,提升了车牌识别的准确度和效率。

  • 模块化设计:将系统划分为多个功能模块,便于维护和扩展,增强了系统的可重用性。

实践意义

本项目通过实际动手操作,帮助工程技术人员深入理解图像处理算法和嵌入式系统的设计与实现,提升了其在实际工程中的应用能力。通过编写代码、调试硬件和优化算法,参与者能够更好地掌握电子工程、计算机科学和自动化控制等相关知识。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1542109.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【SQLite数据库常规使用命令】

之前在做围绕数据库相关的一些小工具的时候&#xff0c;想找一款数据库作为小工具的资料库。需求是&#xff1a;不用复杂的安装&#xff0c;支持简单SQL&#xff0c;空间占用小&#xff0c;操作简单等等。 结合着之前接触到的一些研发同事做的产品的使用经验&#xff0c;我想到…

华为HarmonyOS地图服务 3 - 如何开启和展示“我的位置”?

一. 场景介绍 本章节将向您介绍如何开启和展示“我的位置”功能&#xff0c;“我的位置”指的是进入地图后点击“我的位置”显示当前位置点的功能。效果如下&#xff1a; 二. 接口说明 “我的位置”功能主要由MapComponentController的方法实现&#xff0c;更多接口及使用方法…

基于LSTM的温度时序预测

1.背景 本文接【时序预测SARIMAX模型】 一文&#xff0c;采用LSTM模型进行平均温度数据预测。具体的背景和数据分析就不做重复说明&#xff0c;感兴趣可以去看上文即可。 2.LSTM模型 RNN&#xff08;Recurrent Neural Network&#xff0c;循环神经网络&#xff09;是一种特殊…

【ARM】armv8的虚拟化深度解读

Type-1 hypervisor Type-1虚拟化也叫做Bare metal, standalone, Type1 Type2 hypervisor Type-2虚拟化也叫做hosted, Type-2 VM和vCPU(虚拟机和虚拟cpu) 在一个VM&#xff08;虚拟机&#xff09;中有多个vCPU&#xff0c;多个vCPU可能属于同一个Vritual Processor。 EL2…

java-----异常

目录 异常&#xff1a;代表程序出现的问题 运行时异常和编译时异常的区别&#xff1f; 异常的作用&#xff1a; 异常的处理方式: 异常中常见的方法: 抛出异常: 自定义异常: 异常&#xff1a;代表程序出现的问题 Exception:叫做异常&#xff0c;代表程序可能出现的问题。…

【alluxio编译报错】Some files do not have the expected license header

Some files do not have the expected license header 快捷导航 在开始解决问题之前&#xff0c;大家可以通过下面的导航快速找到相关资源啦&#xff01;&#x1f4a1;&#x1f447; 快捷导航链接地址备注相关文档-ambaribigtop自定义组件集成https://blog.csdn.net/TTBIGDA…

【JavaScript】LeetCode:46-50

文章目录 46 翻转二叉树47 对称二叉树48 二叉树的直径49 二叉树的层序遍历50 将有序数组转换为二叉搜索树 46 翻转二叉树 递归前序遍历 / 后序遍历&#xff0c;这里给出前序遍历的代码。遍历节点&#xff0c;交换左右子树。 /*** Definition for a binary tree node.* functio…

vue3快速入门(看心情更新)

vue3初始化工程目录 编写一个App .vscode下的extensions.json 配置插件的地方 public 页签图标 src 你的.vue文件都是在这个目录下的 .gitgnore 忽略文件 env.d.ts 让Ts去识别一些文件 index.html 入口文件 vite.config.ts 整个工程的配置文件 .vue文件中可以写的内容 template…

Windows安装Oracle11gR2(图文教程)

本章教程&#xff0c;记录在Windows10上安装Oracle11gR2过程。 一、下载安装包 通过网盘分享的文件&#xff1a;oracle11g 链接: https://pan.baidu.com/s/15ilciQ5NlKWtClklmdAH_w?pwds4dd 提取码: s4dd 二、下载并解压文件 将网盘中的安装包文件下载到本地&#xff0c;在此之…

心觉:感恩何其重要,感恩之心如何培养

Hi&#xff0c;我是心觉&#xff0c;与你一起玩转潜意识、脑波音乐和吸引力法则&#xff0c;轻松掌控自己的人生&#xff01; 挑战每日一省写作177/1000天 上篇文章我们讲了保持感恩之心&#xff0c;可以吸引更多的机会和财富 但是现实中很多人是缺乏感恩之心 这是由于他们…

c++day3 手动封装一个顺序表(SeqList),分文件编译实现

要求: 有私有成员&#xff1a;顺序表数组的起始地址 ptr、 顺序表的总长度&#xff1a;size、顺序表的实际长度&#xff1a;len 成员函数&#xff1a;初始化 init(int n) 判空&#xff1a;empty 判满&#xff1a;full 尾插&#xff1a;push_back 插入&#xff1a;insert&…

进程间的通信4 共享内存

共享内存 1.共享内存简介 共享内存是将分配的物理空间直接映射到进程的用户虚拟地址空间中&#xff0c;减少数据在内核空间缓存共享内存是一种效率较高的进程间通讯的方式在 Linux 系统中通过 ipcs -m 查看所有的共享内存 共享内存模型图 2.共享内存的创建 1.函数头文件 #…

【如何在 Windows 10 主机上通过 VMware 安装 Windows 11 虚拟机,并共享主机网络】

环境说明 主机操作系统&#xff1a;Windows 10虚拟机操作系统&#xff1a;Windows 11虚拟机软件&#xff1a;VMware 步骤一&#xff1a;确保主机&#xff08;Windows 10&#xff09;网络连接正常 启动网络加速软件&#xff1a;在主机上启动软件&#xff0c;确保主机可以正常访…

JavaEE: 深入探索TCP网络编程的奇妙世界(三)

文章目录 TCP核心机制TCP核心机制三: 连接管理建立连接(三次握手)断开连接(四次挥手)三次握手/四次挥手 流程简图 TCP核心机制 书接上文~ TCP核心机制三: 连接管理 建立连接(三次握手),断开连接(四次挥手). 这里的次数指的是网络通信的次数,挥手/握手是形象的比喻(handshake…

基于SpringBoot+Vue的智慧物业管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目源码、Python精…

SpringBoot3核心特性-核心原理

目录 传送门前言一、事件和监听器1、生命周期监听2、事件触发时机 二、自动配置原理1、入门理解1.1、自动配置流程1.2、SPI机制1.3、功能开关 2、进阶理解2.1、 SpringBootApplication2.2、 完整启动加载流程 三、自定义starter1、业务代码2、基本抽取3、使用EnableXxx机制4、完…

SaaS软件的配置化平台是如何实现个性化定制的?

SaaS&#xff08;Software as a Service&#xff0c;软件即服务&#xff09;是一种通过互联网提供软件的模式&#xff0c;用户无需安装和维护任何复杂的基础设施&#xff0c;只需通过网络连接即可使用软件。SaaS 供应商负责软件的维护、升级和可用性&#xff0c;用户则通过订阅…

智能体时代,AI正从“神坛”走向“人间”

从通用大模型到行业大模型&#xff1a;AI智能体引领新风口 在人工智能领域&#xff0c;一场深刻的变革正悄然发生。从昔日高高在上的通用大模型&#xff0c;到如今愈发接地气的行业大模型&#xff0c;AI的风向标已经鲜明地指向了AI智能体&#xff08;AI Agent&#xff09;&…

APO v0.4.0 发布:新增影响面分析;新增调用数据库指标;优化告警事件关联展示

APO 新版本 v0.4.0 正式发布&#xff01;本次更新主要包含以下内容&#xff1a; 新增影响面分析&#xff0c;识别服务端点对服务入口的影响 服务入口是指业务被访问时调用的第一个服务端点&#xff0c;在调用拓扑图中处于最上游。服务入口直接反映了系统对外提供服务的状态&a…

基于SpringBoot+Vue+MySQL的手机销售管理系统

系统展示 用户前台界面 管理员后台界面 商家后台界面 系统背景 随着智能手机的普及和市场竞争的日益激烈&#xff0c;手机销售行业面临着前所未有的挑战与机遇。传统的手工记录和简单的电子表格管理方式已难以满足现代手机销售业务的需求&#xff0c;销售数据的混乱和管理效率低…