《线性代数》常用公式定理总结

文章目录

  • 1 行列式
  • 2 矩阵
  • 3 齐次线性方程组
  • 4 非齐次线性方程组
  • 5 公共解问题
  • 6 同解问题
  • 7 抽象型方程组
    • 7.1 矩阵A各行元素之和均为0
    • 7.2 方程组解的个数与秩的关系
    • 7.3 选择题常考
    • 7.4 证线性无关
    • 7.5 证线性相关
    • 7.6 线性方程组的几何意义
    • 7.7 线性表出
  • 8 向量空间
    • 8.1 向量空间中的坐标
    • 8.2 过渡矩阵
    • 8.3 坐标变换
  • 9 特征值特征向量
    • 9.1 施密特正交化
    • 9.2 用特征值和特征向量求A
  • 10 相似
    • 10.1 相似的五个性质
    • 10.2 相似的结论
    • 10.3 相似对角化
  • 11 实对称矩阵(必能相似对角化)
  • 12 正交矩阵
  • 13 二次型
    • 13.1 惯性定理
    • 13.2 配方法
    • 13.3 正交变换法
      • 13.3.1 常规计算
      • 13.3.2 反求参数,A或(f)
      • 13.3.3 最值问题
      • 13.3.4 几何应用
  • 14 合同
    • 14.1 实对称矩阵的合同
  • 15 正定二次型(正定矩阵)
  • 16 反对称矩阵

1 行列式

1.1 克拉默法则

在这里插入图片描述

1.2 基本性质

  1. 交换性质
    行列式的行列互换,行列式的值不变。

  2. 对角矩阵的行列式
    对于对角矩阵(或更一般的上三角矩阵或下三角矩阵),行列式等于对角线上元素的乘积。 ∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ = a 11 a 22 ⋯ a n n \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}= a_{11} a_{22} \cdots a_{nn} a11000a22000ann =a11a22ann

  3. 矩阵乘积的行列式
    两个矩阵相乘的行列式等于它们行列式的乘积。

    det ⁡ ( A B ) = det ⁡ ( A ) det ⁡ ( B ) \det(AB) = \det(A) \det(B) det(AB)=det(A)det(B)

  4. 行列互换的行列式
    交换矩阵的两行(或两列),行列式取相反数。

    det ⁡ ( A ) = − det ⁡ ( B ) \det(A) = -\det(B) det(A)=det(B)

  5. 相同行(或列)的行列式
    如果矩阵的两行(或两列)相同,则该行列式为零。

  6. 比例行(或列)的行列式
    如果矩阵的两行(或两列)成比例,则该行列式为零。

  7. 加法性质
    如果矩阵的某一行(或某一列)是两行(或两列)的和,则行列式等于这两行(或两列)分别替换的行列式之和。

  8. 行列式的行数与列数
    行列式仅对方阵(行数等于列数的矩阵)定义。

  9. 行列式与矩阵的转置
    矩阵的行列式等于其转置矩阵的行列式。

    det ⁡ ( A ) = det ⁡ ( A T ) \det(A) = \det(A^T) det(A)=det(AT)

  10. 单位矩阵的行列式
    单位矩阵的行列式为1。

    det ⁡ ( E ) = 1 \det(E) = 1 det(E)=1

  11. 矩阵的行(或列)倍加法不变性
    对矩阵的某一行(或列)进行倍加(即将该行(或列)加上另一行(或列)的某个倍数)操作,行列式不变。

  12. 矩阵的数乘
    如果将矩阵的某一行(或某一列)乘以一个数 c c c,那么行列式等于原行列式乘以 c c c

    det ⁡ ( c A ) = c n det ⁡ ( A ) \det(cA) = c^n \det(A) det(cA)=cndet(A)

1.3 余子式 M i j M_{ij} Mij

余子式是从一个 n × n n \times n n×n矩阵中,删除某一行和某一列后得到的 ( n − 1 ) × ( n − 1 ) (n-1) \times (n-1) (n1)×(n1)矩阵的行列式。

定义
对于一个矩阵 A A A的元素 a i j a_{ij} aij,其对应的余子式 M i j M_{ij} Mij是指从矩阵 A A A中删除第 i i i行和第 j j j列后得到的子矩阵的行列式。

1.4 代数余子式 A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(1)i+jMij

代数余子式是余子式的带符号版本,用于行列式的展开。具体来说,代数余子式 A i j A_{ij} Aij定义为:

A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(1)i+jMij
∣ A ∣ = ∑ j = 1 n a i j A i j = ∑ i = 1 n a i j A i j |A|=\sum_{j=1}^na_{ij}A_{ij}=\sum_{i=1}^na_{ij}A_{ij} A=j=1naijAij=i=1naijAij

注意:代数余子式 A i j A_{ij} Aij就是伴随矩阵 A ∗ A^* A的矩阵系数
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) T A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}^T A= A11A12A1nA21A22A2nAn1An2Ann T

在这里插入图片描述
在这里插入图片描述

1.5 具体型行列式计算(化为基本型)

1.5.1 主对角线行列式:主对角元素相乘

1.5.2 副对角线行列式:副对角元素相乘并判断正负号

在这里插入图片描述
在这里插入图片描述

1.5.3 拉普拉斯展开式

在这里插入图片描述

1.5.4 范德蒙德行列式:只看第二行,右减左,全都减,减完乘起来

在这里插入图片描述

1.5.5 加边法:没有明显的公共规律,自己补一个公共规律

在这里插入图片描述

1.5.6 递推法(适用于计算异爪型行列式):高阶→低阶

建立两阶或三阶之间的关系,且每阶的元素分布规律必须相同

1.5.7 数学归纳法(适用于证明题):低阶→高阶

  • 第一数学归纳法(验证1个):验证 n = 1 n=1 n=1时成立,再假设 n = k ( k ≥ 2 ) n=k(k≥2) n=kk2时成立,最后证明 n = k + 1 n=k+1 n=k+1时成立,由此推出对任意 n n n成立
  • 第二数学归纳法(验证2个):验证 n = 1 , n = 2 n=1,n=2 n=1n=2时成立,再假设 n < k n<k n<k时成立,最后证明 n = k n=k n=k时成立,由此推出对任意 n n n成立

用数学归纳法证爪型行列式通式:

  1. n = 1 n=1 n=1
  2. n = 2 n=2 n=2
  3. 假设 n < k n<k n<k时成立
  4. n = k n=k n=k时,按第一列展开得通式形式
  5. 得证

1.5.8 一些处理手段

在这里插入图片描述

1.6 抽象型行列式的计算: a i j a_{ij} aij未给出

1.6.1 用行列式性质

1.6.2 用矩阵知识

在这里插入图片描述

1.6.3 用相似理论

在这里插入图片描述

2 矩阵

2.1 转置、逆、伴随的一些关系式

在这里插入图片描述
在这里插入图片描述

2.2 求 A n A^n An

2.2.1 A为方阵,且r(A)=1

在这里插入图片描述

2.2.2 试算 A 2 A^2 A2(或 A 3 A^3 A3),找规律【归纳法→探索、研究精神!】

在这里插入图片描述

2.2.3 A=B+C用二项展开式

在这里插入图片描述

2.2.4 用相似理论

在这里插入图片描述

2.3 矩阵的伴随

在这里插入图片描述
在这里插入图片描述

求法

简单一点求矩阵的伴随,进而用伴随来求矩阵的逆

在这里插入图片描述

在这里插入图片描述

2.4 矩阵的逆

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.5 矩阵的转置

在这里插入图片描述

2.6 初等矩阵(左行右列)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.7 分块矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.8 矩阵方程(含未知矩阵X)

在这里插入图片描述

2.9 矩阵方程求解

在这里插入图片描述

2.10 秩

矩阵的秩是其行秩和列秩的值,而行秩与列秩总是相等的。秩决定了矩阵的行向量或列向量的线性独立性,也影响了线性方程组的解的情况(如是否有解以及解的数量)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在两个向量组中,被表示的向量组的秩不大于表示它的向量组的秩。(即:两向量组中,被表示的向量组的秩不大)

2.11 行向量组等价(两方程组同解问题)

两个行向量组 等价,当且仅当它们能通过一系列初等行变换相互转换。

具体解释

  • 如果矩阵 A A A 和矩阵 B B B 的行向量组等价,这意味着可以通过对 A A A 进行有限次初等行变换,得到 B B B。反之亦然。换句话说, A A A B B B 具有相同的行空间,它们的行向量可以通过相同的线性组合生成。

2.12 维数与向量的关系

  1. 维数

    • 维数 指的是向量中元素的个数。在矩阵中,维数通常指的是向量所在空间的维度。例如,一个在 R m \mathbb{R}^m Rm 空间中的向量有 m m m 个元素。
    • 对于一个线性方程组来说,维数 指的是系数矩阵的行数,也是方程的个数。
  2. 向量个数

    • 向量个数 指的是列向量的个数,通常是系数矩阵的列数,也代表方程中未知数的个数。
  3. 线性相关性

    • 如果矩阵的列数大于行数(向量个数 > 维数),则这些列向量必定线性相关。

假设有一个矩阵 A A A 3 × 4 3 \times 4 3×4 矩阵( 3 3 3 行, 4 4 4 列):

  • 向量的维数是 3 3 3,因为每个列向量有 3 3 3 个元素。
  • 向量的个数是 4 4 4,因为矩阵有 4 4 4 列。
  • 因为 4 > 3 4 > 3 4>3,根据线性代数定理, A A A 的列向量必定是线性相关的。

3 齐次线性方程组

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4 非齐次线性方程组

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5 公共解问题

在这里插入图片描述

6 同解问题

  • 行向量组等价是两个方程组同解的充要条件。如果两个线性方程组的增广矩阵的行向量组是等价的(即通过初等行变换可以互相转换),那么这两个方程组一定有相同的解集。这是因为初等行变换不会改变线性方程组的解。
  • 如果矩阵 A A A B B B 行等价,则存在一个可逆矩阵 P P P 使得 P A = B PA = B PA=B 。这表明可以通过对 A A A 进行初等行变换得到 B B B,而这些初等行变换可以表示为一个可逆矩阵 P P P 作用在 A A A 上。
  • 一个行向量代表一个方程,行向量组的一次初等行变换相当于对方程组做了一次同解变形。由于初等行变换不会改变线性方程组的解集,所以两个增广矩阵行向量组等价,意味着它们对应的方程组有相同的解。
  • 列向量的关系则与方程组是否有解密切相关。
  • 若两个方程组互为线性组合,则两个方程组等价。等价的两个方程组一定同解,但同解的两个方程组不一定等价。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 抽象型方程组

7.1 矩阵A各行元素之和均为0

在这里插入图片描述

7.2 方程组解的个数与秩的关系

在这里插入图片描述

7.3 选择题常考

在这里插入图片描述

7.4 证线性无关

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7.5 证线性相关

在这里插入图片描述

要证线性相关,那么只需要证得有一个系数不为0就能使等式成立即可。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

7.6 线性方程组的几何意义

在这里插入图片描述

在这里插入图片描述
有解情况 \mathbf{有解情况} 有解情况

几何意义代数表达
三平面相交于一点(唯一解) r ( A ) = r ( A ‾ ) = 3 r(A)=r(\overline{A})=3 r(A)=r(A)=3法向量两两正交
三平面相交于一条线 r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两面都不重合)
两平面重合,第三平面与之相交 r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合)
三平面重合 r ( A ) = r ( A ‾ ) = 1 r(A)=r(\overline{A})=1 r(A)=r(A)=1

如果三个平面的法向量两两正交,那么对应的线性方程组有唯一解;若此时引入第四个平面,当且仅当第四个平面与前三个平面相交于同一个点时,方程组有唯一解,除此之外无解

无解情况 \mathbf{无解情况} 无解情况

几何意义代数表达
三平面两两 相交 \mathbf{相交} 相交,且交线相互平行 r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2r(A)=3 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3两两线性无关(任何两个面都不相交)
两平面平行,第三张平面与它们 相交 \mathbf{相交} 相交 r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2r(A)=3 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3中有两个向量线性相关(存在两个面平行但不重合)
三张平面相互平行但不重合 r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两个面都不重合)
两张平面重合,第三张平面与它们平行但不重合 r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合)

7.7 线性表出

在这里插入图片描述

在这里插入图片描述

8 向量空间

在这里插入图片描述
在这里插入图片描述

8.1 向量空间中的坐标

在这里插入图片描述

题型1:要求一个非零向量 b \mathbf{b} b,使得它在两个不同基 { a 1 , a 2 , a 3 } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} {a1,a2,a3} { β 1 , β 2 , β 3 } \{\mathbf{β}_1, \mathbf{β}_2, \mathbf{β}_3\} {β1,β2,β3} 下的坐标相同。设 b \mathbf{b} b 在这两个基下的坐标为 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3),即:
b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 b=x1a1+x2a2+x3a3
b = x 1 β 1 + x 2 β 2 + x 3 β 3 \mathbf{b} = x_1\mathbf{β}_1 + x_2\mathbf{β}_2 + x_3\mathbf{β}_3 b=x1β1+x2β2+x3β3
两式相减,得到
x 1 ( a 1 − β 1 ) + x 2 ( a 2 − β 2 ) + x 3 ( a 3 − β 3 ) = 0 x_1(\mathbf{a}_1 - \mathbf{β}_1) + x_2(\mathbf{a}_2 - \mathbf{β}_2) + x_3(\mathbf{a}_3 - \mathbf{β}_3) = 0 x1(a1β1)+x2(a2β2)+x3(a3β3)=0
为了满足上述等式,并且因为 b \mathbf{b} b 是非零向量,所以 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 至少有一个不为零。这表明 a 1 − β 1 \mathbf{a}_1 - \mathbf{β}_1 a1β1 a 2 − β 2 \mathbf{a}_2 - \mathbf{β}_2 a2β2 a 3 − β 3 \mathbf{a}_3 - \mathbf{β}_3 a3β3 必须是线性相关的。
解齐次方程组
( a 1 − β 1 a 2 − β 2 a 3 − β 3 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix} \mathbf{a}_1 - \mathbf{β}_1 & \mathbf{a}_2 - \mathbf{β}_2 & \mathbf{a}_3 - \mathbf{β}_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} (a1β1a2β2a3β3) x1x2x3 = 000

得解坐标 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3,从而得到向量 b \mathbf{b} b
b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 b=x1a1+x2a2+x3a3

8.2 过渡矩阵

在这里插入图片描述

在这里插入图片描述

8.3 坐标变换

在这里插入图片描述

在这里插入图片描述

9 特征值特征向量

注意:方程组可以有零解,但特征向量决不能是零向量! 注意:方程组可以有零解,但特征向量决不能是零向量! 注意:方程组可以有零解,但特征向量决不能是零向量!
A ∗ 、 A k ( k ≠ − 1 ) 的特征向量不一定是 A 的特征向量 \boldsymbol{A^*}、\boldsymbol{A^k}(k≠-1)的特征向量不一定是\boldsymbol{A}的特征向量 AAk(k=1)的特征向量不一定是A的特征向量
A − 1 、 k A ( k ≠ 0 ) 的特征向量一定是 A 的特征向量 \boldsymbol{A^{-1}}、\boldsymbol{kA}(k≠0)的特征向量一定是\boldsymbol{A}的特征向量 A1kA(k=0)的特征向量一定是A的特征向量

矩阵特征值对应特征向量
A \boldsymbol{A} A λ \boldsymbol{λ} λ α \boldsymbol{α} α
A T \boldsymbol{A^T} AT λ \boldsymbol{λ} λ 重新计算 \boldsymbol{重新计算} 重新计算
将 A 对称化得到 B = A + A T 2 \boldsymbol{将A对称化得到B=\frac{A+A^T}{2}} A对称化得到B=2A+AT 重新计算 \boldsymbol{重新计算} 重新计算 重新计算 \boldsymbol{重新计算} 重新计算
k A \boldsymbol{kA} kA k λ \boldsymbol{kλ} α \boldsymbol{α} α
A k \boldsymbol{A^k} Ak λ k \boldsymbol{λ^k} λk α \boldsymbol{α} α
f ( A ) \boldsymbol{f(A)} f(A) f ( λ ) \boldsymbol{f(λ)} f(λ) α \boldsymbol{α} α
A − 1 \boldsymbol{A^{-1}} A1 1 λ \boldsymbol{\frac{1}{λ}} λ1 α \boldsymbol{α} α
A ∗ \boldsymbol{A^*} A ∣ A ∣ λ \boldsymbol{\frac{|A|}{λ}} λA α \boldsymbol{α} α
P − 1 A P = B \boldsymbol{P^{-1}AP=B} P1AP=B λ \boldsymbol{λ} λ P − 1 α \boldsymbol{P^{-1}α} P1α
P − 1 f ( A ) P = f ( B ) \boldsymbol{P^{-1}f(A)P=f(B)} P1f(A)P=f(B) f ( λ ) \boldsymbol{f(λ)} f(λ) P − 1 α \boldsymbol{P^{-1}α} P1α

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

9.1 施密特正交化

在这里插入图片描述
在这里插入图片描述

9.2 用特征值和特征向量求A

在这里插入图片描述
在这里插入图片描述

10 相似

10.1 相似的五个性质

在这里插入图片描述

10.2 相似的结论

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

10.3 相似对角化

在这里插入图片描述

在这里插入图片描述

11 实对称矩阵(必能相似对角化)

在这里插入图片描述
如果矩阵 A A A 不是实对称矩阵,则不同特征值对应的特征向量不一定相互正交。

在这里插入图片描述

12 正交矩阵

在这里插入图片描述
在这里插入图片描述

13 二次型

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

13.1 惯性定理

在这里插入图片描述
在这里插入图片描述

13.2 配方法

在这里插入图片描述

13.3 正交变换法

13.3.1 常规计算

在这里插入图片描述
在这里插入图片描述

13.3.2 反求参数,A或(f)

13.3.3 最值问题

在这里插入图片描述
在这里插入图片描述

13.3.4 几何应用

二次曲面 f = x T A x = 1 f=x^TAx=1 f=xTAx=1的类型

λ 1 , λ 2 , , λ 3 的符号 λ_1,λ_2,,λ_3的符号 λ1,λ2,,λ3的符号 f ( x 1 , x 2 , x 3 ) = 1 f(x_1,x_2,x_3)=1 f(x1,x2,x3)=1
3正椭球面
2正1负单页双曲面
1正2负双叶双曲面 f = 0 时为锥面 f=0时为锥面 f=0时为锥面
2正1零椭圆柱面
1正1负1零双曲柱面

在这里插入图片描述

14 合同

对于任意的 n × n n \times n n×n 矩阵 A A A B B B,如果存在一个可逆矩阵 C C C 使得:

C T A C = B C^TAC = B CTAC=B

则称矩阵 A A A B B B合同矩阵,并且这个变换叫做合同变换。

变换特点

  1. 行列同步:合同变换中的行变换和列变换可同步进行。

  2. 不改变矩阵的秩:合同变换保持矩阵的秩。

  3. 二次型化简:合同变换常用于二次型的化简,使得原矩阵的结构得到简化,同时保持二次型的性质。

在这里插入图片描述

14.1 实对称矩阵的合同

两个实对称矩阵 A A A B B B 如果是合同的,即存在一个可逆矩阵 C C C 使得 C T A C = B C^TAC = B CTAC=B,那么它们的惯性指数(正惯性指数、负惯性指数和零惯性指数的个数)必须相同

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

15 正定二次型(正定矩阵)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

正定矩阵

  • 定义:正定矩阵是一个对称矩阵,并且对于任意非零向量 x \mathbf{x} x,有 x T A x > 0 \mathbf{x}^T A \mathbf{x} > 0 xTAx>0
  • 性质:正定矩阵的特征值都是正数,通常用于优化问题,表示能量最小化等场景。能量最小化通常与目标函数的最小化相关联。比如在机器学习中的损失函数或在经济学中的成本函数,这些函数的最小值往往代表最佳解。正定矩阵在这种场景中非常重要,因为它对应的二次型函数如果是正定的,那么优化问题的目标函数就有一个唯一的最小值。这个最小值就是能量最小化的解。

二次型矩阵

  • 定义:二次型矩阵是描述二次型函数的对称矩阵,形式为 f = x T A x f= \mathbf{x}^T A \mathbf{x} f=xTAx,其中 A A A 是对称矩阵。
  • 性质:二次型矩阵可以是正定的、半正定的、负定的或不定的,具体取决于函数 f f f 的符号情况。

两者的区别

  • 范围不同:正定矩阵是特定类型的二次型矩阵,即二次型矩阵中的一种特殊情况。
  • 判别标准:正定矩阵要求对于所有非零向量 x \mathbf{x} x x T A x \mathbf{x}^T A \mathbf{x} xTAx 必须大于零;而二次型矩阵可以根据其对应二次型的符号不同,具有不同的性质。

16 反对称矩阵

在这里插入图片描述

反对称矩阵(也称为斜对称矩阵)是一类特殊的矩阵,其定义是矩阵的转置等于其负矩阵,即对于矩阵 ( A ) 来说,反对称条件为:

A T = − A A^T = -A AT=A

具体来说,矩阵中的元素满足:
a i j = − a j i a_{ij} = -a_{ji} aij=aji
这意味着矩阵的对角线元素必须为零(即 a i i = 0 a_{ii} = 0 aii=0),因为 a i i = − a i i a_{ii} = -a_{ii} aii=aii,这只有在 a i i = 0 a_{ii} = 0 aii=0 时成立。例如:一个 3 × 3 3×3 3×3 的反对称矩阵为:
A = ( 0 a 12 a 13 − a 12 0 a 23 − a 13 − a 23 0 ) A = \begin{pmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{pmatrix} A= 0a12a13a120a23a13a230

反对称矩阵的性质:

  1. 对角线元素为零:反对称矩阵的对角线元素必须为零。
  2. 特征值性质:反对称矩阵的特征值要么是零,要么是纯虚数(对于实数反对称矩阵)。
  3. 奇数维度的行列式为零:如果反对称矩阵的维度是奇数,那么其行列式为零。这是因为反对称矩阵在奇数维度下的非零特征值成对出现,每对特征值互为相反数,导致行列式为零。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1540242.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

git 本地分支误删,怎么恢复?误删本地已提交未推送的分支!

误删本地已提交未推送的分支&#xff01; 前提&#xff1a; 已提交&#xff01; 重点&#xff1a;未推送&#xff01; 要是推送了&#xff0c;再拉一下代码就行了。你也不会来搜这个帖子了。 如果你删除的分支里有你未提交的代码&#xff0c;不用往下看了&#xff0c;帮不到你…

树莓派4B+UBUNTU20.04+静态ip+ssh配置

树莓派4B+UBUNTU20.04+静态ip+ssh配置 1.烧录Ubuntu镜像1.1选择pi 4b1.2选择ubuntu server (服务器版,无桌面)20.041.3选择sd卡1.4 点击右下角 NEXT ,编辑设置,输入密码,wifi选CN, 开启ssh1.5 烧录,依次点击“是”,等待完成2 烧录完成后装入树莓派,上电,等待系统完成配…

电竞显示器哪个牌子好

电竞显示器哪个好&#xff1f;你想成为电竞选手吗&#xff1f;显示器很关键&#xff0c;下面我就列举7款市面流行的电竞显示器给大家看看&#xff0c;总有一款适合你。 1.电竞显示器哪个好 - 蚂蚁电竞 ANT255VF电竞显示器 一、产品概述 蚂蚁电竞 ANT255VF电竞显示器是一款专为…

鱼哥好书分享活动第31期:如何构建出更好的大模型RAG系统?《大模型RAG实战》

鱼哥好书分享活动第31期&#xff1a;如何构建出更好的大模型RAG系统&#xff1f;《大模型RAG实战》 S1 初级RAGS2 高级RAG模型测策略测模型微调测 S3 超级RAG购买链接&#xff1a;内容简介&#xff1a;赠书抽奖规则: ChatGPT爆火之后&#xff0c;以ChatPDF为首的产品组合掀起了…

Node-red 某一时间范围内满足条件的数据只返回一次

厂子里有个业务需求增加一段逻辑&#xff0c;根据点位数值&#xff0c;判断是否让mes执行之后的逻辑。 网关采集周期5s/次&#xff0c;及数据上报周期5s/次; iot通过网关写入时间为8s左右&#xff1b; 同类设备共用一条规则链&#xff1b; 想当触发条件时修改”完成上传“不…

简单题67.二进制求和 (java)20240919

题目描述&#xff1a; Java&#xff1a; class Solution {public String addBinary(String a, String b) {StringBuilder result new StringBuilder();int i a.length()-1;int j b.length()-1;int carry 0; //记录进位信息while(i>0 || j>0 || carry!0){int sum ca…

[Linux#55][网络协议] 序列化与反序列化 | TcpCalculate为例

目录 1. 理解协议 1.1 结构化数据的传输 序列化与反序列化 代码感知&#xff1a; Request 类 1. 构造函数 2. 序列化函数&#xff1a;Serialize() 3. 反序列化函数&#xff1a;DeSerialize() 补充 4. 成员变量 Response 类 1. 构造函数 2. 序列化函数&#xff1a;…

免费下载PDF | 自然语言处理新范式:基于预训练模型的方法

前言 本次给大家推荐阅读的书籍是——《自然语言处理&#xff1a;基于预训练模型的方法》。近些年来&#xff0c;以GPT、BERT为代表的预训练模型在自然语言处理领域掀起了一股浪潮&#xff0c;打开了“预训练精调”的自然语言处理新范式的大门。 由电子工业出版社出版的《自然…

动手学深度学习(pytorch土堆)-06损失函数与反向传播、模型训练、GPU训练

模型保存与读取 完整模型训练套路 import torch import torchvision.datasets from torch import nn from torch.nn import Conv2d, MaxPool2d, Flatten, Linear from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriterfrom model impo…

AV1 Bitstream Decoding Process Specification--[7]: 语法结构语义-3

原文地址&#xff1a;https://aomediacodec.github.io/av1-spec/av1-spec.pdf 没有梯子的下载地址&#xff1a;AV1 Bitstream & Decoding Process Specification摘要&#xff1a;这份文档定义了开放媒体联盟&#xff08;Alliance for Open Media&#xff09;AV1视频编解码…

分发饼干00

题目链接 分发饼干 题目描述 注意点 1 < g[i], s[j] < 2^31 - 1目标是满足尽可能多的孩子&#xff0c;并输出这个最大数值 解答思路 可以先将饼干和孩子的胃口都按升序进行排序&#xff0c;随后根据双指针 贪心&#xff0c;将当前满足孩子胃口的最小饼干分配给该孩…

再次理解UDP协议

一、再谈端口号 在 TCP / IP 协议中&#xff0c;用 "源 IP", "源端口号", "目的 IP", "目的端口号", "协议号" 这样一个五元组来标识一个通信(可以通过 netstat -n 查看) 我们需要端口号到进程的唯一性&#xff0c;所以一个…

Obsidian如何粘贴的图片类似于Typora,图片相对当前路径

添加插件 下载插件&#xff1a; Custom Attachment Location 基础设置 同时需要在下面进行设置 示意效果

大数据多集群数据作业和集群状态监控

目前手里面有四套大数据集群的作业需要维护&#xff0c;分别属于不同的客户&#xff0c;我同岗位的兄弟离职后&#xff0c;所有的数据作业都落到我头上了&#xff0c;公司也不招人了。开发新的数据作业倒没有什么问题&#xff0c;就是客户叫我补数的时候&#xff0c;头比较大&a…

Linux基础权限

Linux基础权限 shell的概念Linux基础权限Linux的两种用户Linux的权限管理权限认知权限设置权限掩码粘滞位 shell的概念 &#xff08;shell&#xff09;命令行解释器 的存在意义&#xff1a; 将用户的命令翻译给操作系统&#xff0c;然后返回OS的结果给用户&#xff1b;保护OS…

YOLOv5图像识别教程包成功-以识别桥墩缺陷详细步骤分享

前置环境资源下载 提示&#xff1a;要开外网才能下载的环境我都放在了网盘里&#xff0c;教程中用到的环境可从这里一并下载&#xff1a; https://pan.quark.cn/s/f0c36aa1ef60 1. 下载YOLOv5源码 官方地址&#xff1a;GitHub - ultralytics/yolov5: YOLOv5 &#x1f680; …

9.4 溪降技术:带包下降

目录 9.4 携包下降概述观看视频课程电子书&#xff1a;携包下降在瀑布中管理背包扔背包滑索传送背包固定到安全带 V7 提示&#xff1a;将背包固定到安全带总结 9.4 携包下降 概述 在水流和悬崖边缘携包下降是最危险的情况&#xff01; 正如我们之前所学&#xff0c;在峡谷探险中…

流程型制造业MES系统的特点及主要功能介绍

流程型MES系统的应用程度较高。特别是石油石化行业原有自动化和信息化的程度较高&#xff0c;一般应用在于生产管控&#xff0c;mes系统的应用主要目的是使得最容易出现产品质量的配料、投料以及乳化加工过程得到管控和追溯。 随着生产工艺发展&#xff0c;石化行业MES系统应用…

Java基础(中)

面向对象基础 面向对象和面向过程的区别 面向过程编程&#xff08;Procedural-Oriented Programming&#xff0c;POP&#xff09;和面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;是两种常见的编程范式&#xff0c;两者的主要区别在于解决…

Java设计模式——工厂方法模式(完整详解,附有代码+案例)

文章目录 5.3 工厂方法模式5.3.1概述5.3.2 结构5.3.3 实现 5.3 工厂方法模式 针对5.2.3中的缺点&#xff0c;使用工厂方法模式就可以完美的解决&#xff0c;完全遵循开闭原则。 5.3.1概述 工厂方法模式&#xff1a;定义一个创建对象的接口&#xff08;这里的接口指的是工厂&…