进程间通信(命名管道 共享内存)

文章目录

  • 命名管道
    • 原理
    • 命令创建命名管道
    • 函数创建命名管道
  • 共享内存
    • 原理
    • shmget
      • FIOK
    • 代码应用:
      • prems
      • nattch

命名管道

用于两个毫无关系的进程间的通信。

原理

Linux文件的路径是多叉树,故文件的路径是唯一的。
让内核缓冲区不用刷新到磁盘中,一旦刷新就拖慢了操作系统。所以磁盘中有个特殊文件,在内存中写入不会刷新到磁盘,让两个进程在内存中通信,该文件叫做命名管道。(命名:有路径就有名字;管道:用于内存通信)
在这里插入图片描述

命令创建命名管道

可以直接使用系统命令创建命名管道
在这里插入图片描述
p打头的文件就是管道文件
在这里插入图片描述
echo是进程,cat也是进程。两个进程基于管道实现了通信。写入的时候,管道的大小依旧为0。
在这里插入图片描述

函数创建命名管道

在这里插入图片描述
返回值:成功返回0,失败返回-1
在这里插入图片描述
删除指定路径的文件:unlink
在这里插入图片描述
返回值:成功返回0,失败返回-1
在这里插入图片描述
代码如下:
client.cc 负责写:

#include "namedPipe.hpp"// client write
int main()
{NamePiped fifo(comm_path, User);if (fifo.OpenForWrite()){std::cout << "client open namd pipe done" << std::endl;while (true){std::cout << "Please Enter > ";std::string message;getline(std::cin, message);fifo.WriteNamedpipe(message);}}return 0;
}

namePipe.hpp:

#pragma once#include <iostream>
#include <cstdio>
#include <cerrno>
#include <string>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>const std::string comm_path = "./myfifo";//管道的名字
#define DefaultFd -1
#define Creater 1
#define User 2
#define Read O_RDONLY
#define Write O_WRONLY
#define BaseSize 4096//一次读多少字节class NamePiped
{
private:bool OpenNamedPipe(int mode)//权限{_fd = open(comm_path.c_str(),mode);if(_fd < 0)return false;return true;}
public:NamePiped(const std::string &path, int who) : _fifo_path(path), _id(who),_fd(DefaultFd){if (_id == Creater){int res = mkfifo(_fifo_path.c_str(), 0666);if (res != 0){perror("mkfifo");}std::cout << "Creater creat Named pipe" << std::endl;}}bool OpenForRead(){return OpenNamedPipe(Read);}bool OpenForWrite(){return OpenNamedPipe(Write);}int ReadNamedpipe(std::string *out){char buffer[BaseSize];int n = read(_fd,buffer,sizeof(buffer));if(n > 0){buffer[n] = 0;*out = buffer;}return n;}int WriteNamedpipe(const std::string &in){return write(_fd,in.c_str(),in.size());}~NamePiped(){if (_id == Creater){sleep(5);int res = unlink(_fifo_path.c_str());if (res != 0){perror("unlink");}std::cout << "Creater free Named pipe" << std::endl;}if(_fd != DefaultFd) close(_fd);}private:const std::string _fifo_path;  //管道路径int _id;  //身份(user/creater)int _fd;  //文件描述符
};

server.cc 读端:

#include "namedPipe.hpp"// server read:管理命名管道的生命周期(创建与删除)
int main()
{NamePiped fifo(comm_path, Creater);if(fifo.OpenForRead()){std::cout << "server open named pipe done" << std::endl;while (true){std::string message;int res = fifo.ReadNamedpipe(&message);if (res > 0)//读内容{std::cout << "Client send >" << message << std::endl;}else if(res == 0)//写端关闭{std::cout << "Client quit" << std::endl;break;}else//出错{std::cout << "fifo.ReadNamedpipe default" << std::endl;break;}}}return 0;
}

运行:
在这里插入图片描述
光运行./server(读端),不运行写端会创建出管道,但读没有打印出server open named pipe done。说明没有打开管道。
在这里插入图片描述
然后运行了./client(写端)才会打开管道。说明对于读端而言,如果我们打开文件,但还没有写端,就会阻塞在open调用中,直到对方打开。简称进程同步。
在这里插入图片描述
相反如果读端关闭,写端还在写,写端就会收到SIGPIPE信号,让写端进程直接退出
在这里插入图片描述

共享内存

匿名管道和命名管道就是复用文件的代码。
有人从零开始写本地通信方案的代码:System V IPC 有三种方式通信
在这里插入图片描述
因为只能本地通信,且和文件的整合度不高,所以目前这种方案已经快被淘汰了。

原理

假设A进程在物理内存中创建一段内存空间,然后在A进程的地址空间中的共享区申请一片空间,再把虚拟地址与共享内存的映射关系填入页表。拥有映射关系后就可以往创建的内存中写入。B进程的虚拟地址也通过页表与创建的内存映射。这样进程A与进程B看到同一块资源,上面的技术叫做共享内存。
在这里插入图片描述
补充:
1.以上操作都是由操作系统做的,所以操作系统肯定提供给用户系统调用了。
2.AB进程通信,CD进程也要通信,所以共享进程在系统中可以存在很多份,且功能也不一样。操作系统就要对共享内存做管理!先描述,再组织。类似struct Shm的结构体。
在这里插入图片描述
综上所述:共享内存 = 共享内存空间(数据) + 共享内存属性

shmget

创建共享内存的函数调用:IPC_CREAT用于获取;IPC_CREAT | IPC_EXCL用于创建。
在这里插入图片描述
key比较特殊,是标识共享内存的唯一性字段,用于寻找共享空间。
在这里插入图片描述
综上:用户设置key值,AB两个进程就能看见同一块共享空间。
key值是给用户看的,后面会说shmid是给操作系统看的,所以操作系统不创建key值。
但是又不建议用户自己设置key,容易冲突,就给用户提供了函数ftok,由一些算法形成的随机数。

FIOK

同一个pathname,同一个proj_id,就能由算法形成同一个key。
在这里插入图片描述
返回值:成功后返回的是key的值;失败后返回-1
在这里插入图片描述

代码应用:

先验证共享内存的几个特性:
共享内存,不随着进程的结束释放。
Shm.hpp

#ifndef __SHM_HPP__
#define __SHM_HPP__#include <iostream>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <cerrno>#define gShmSize 4096const std::string gpathname = "/root/test/shm";
const int gproj_id = 0x66;std::string ToHex(key_t k)
{char buffer[128];snprintf(buffer,sizeof(buffer),"0x%x",k);return buffer;
}key_t GetCommKey(const std::string pathname, int proj_id)
{key_t res = ftok(pathname.c_str(), proj_id);if (res < 0){perror("create ftok failing");}return res;
}int GetShm(int key)
{int shmid = shmget(key,gShmSize,IPC_CREAT | IPC_EXCL);if(shmid < 0){perror("shmget fail");}return shmid;
}#endif

server.cc

#include "Shm.hpp"int main()
{key_t k = GetCommKey(gpathname,gproj_id);std::cout << "key: " << ToHex(k) << std::endl;int shmid = GetShm(k);std::cout << "shmid:" << shmid << std::endl;return 0;
}

运行两次,发现第二次并没有创建,并显示已经存在,说明共享内存并没有像子进程一样运行完就被父进程或系统回收。
在这里插入图片描述
把创建共享内存改成获取共享内存:

int GetShm(int key)
{int shmid = shmget(key,gShmSize,IPC_CREAT);if(shmid < 0){perror("shmget fail");}return shmid;
}

发现获取的话可以一直获取。
在这里插入图片描述
如果不释放共享内存,就会一直存在,生命周期随内核。
查共享内存:

ipcs -m

在这里插入图片描述
key:属于用户形成,内核使用的一个字段,用户不能使用key来进行shm管理。
shmid:内核给用户返回的一个标识符,用来进行用户级对共享内存进行管理的id值。
删共享内存用命令shmid删除:

ipcrm -m [shmid]

在这里插入图片描述
也可以用操作系统提供的函数:shmctl删除。cmd删除是IPC_RMID,就是位图。
在这里插入图片描述
返回值:移植成功,返回0;失败,返回-1
在这里插入图片描述
综上所述:创建共享内存,使用后删除的代码就能写出来了:

#ifndef __SHM_HPP__
#define __SHM_HPP__#include <iostream>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
#include <cerrno>#define gCreater 1
#define gUser 2
#define gShmSize 4096const std::string gpathname = "/root/test/shm";
const int gproj_id = 0x66;class Shm
{
private:key_t GetCommKey(){key_t key = ftok(_pathname.c_str(), _proj_id);if (key < 0){perror("create ftok failing");}return key;}int GetShmHelper(key_t key, int size, int flag){int shmid = shmget(key, size, flag);if (shmid < 0){perror("shmget fail");}return shmid;}public:Shm(const std::string pathname, const int proj_id, int who): _pathname(pathname), _proj_id(proj_id), _who(who){_key = GetCommKey();if (_who == gCreater){CreaterGetShmid();}else if (_who == gUser){UserGetShmid();}std::cout << "shmid: " << _shmid << std::endl;std::cout << "key: " << ToHex(_key) << std::endl;}~Shm(){if (_who == gCreater){int res = shmctl(_shmid, IPC_RMID, nullptr);if (res < 0)std::cout << "shmctl fail " << std::endl;elsestd::cout << "shmid remove done " << std::endl;}}std::string ToHex(key_t k){char buffer[128];snprintf(buffer, sizeof(buffer), "0x%x", k);return buffer;}bool CreaterGetShmid(){if (_who == gCreater){_shmid = GetShmHelper(_key, gShmSize, IPC_CREAT | IPC_EXCL);sleep(10); //为了创建完看见删除的效果if (_shmid > 0)return true;}std::cout << "Create shmid succeed" << std::endl;return false;}bool UserGetShmid(){if (_who == gUser){_shmid = GetShmHelper(_key, gShmSize, IPC_CREAT);if (_shmid > 0)return true;}std::cout << "Get shmid succeed" << std::endl;return false;}private:key_t _key;int _shmid;int _who;const std::string _pathname;const int _proj_id;
};#endif

创建出共享内存后10秒钟后删除
在这里插入图片描述

prems

perms是共享内存的权限:如果创建的时候,加上权限,perms的值会更改。

bool CreaterGetShmid(){if (_who == gCreater){_shmid = GetShmHelper(_key, gShmSize, IPC_CREAT | IPC_EXCL | 0666);if (_shmid > 0)return true;}std::cout << "Create shmid succeed" << std::endl;return false;}

在这里插入图片描述

nattch

nattch是该共享内存挂接的数量。
挂接的函数:shmat(at有attach的意思)
在这里插入图片描述
返回值:一旦挂接成功,返回地址空间中共享内存的起始地址。(跟malloc返回值类似)
挂接代码:

std::string RoleToString(int who){if (who == gCreater)return "Creater";else if (who == gUser)return "gUser";elsereturn "None";}// 挂接void *AttachShm(){void *shmaddr = shmat(_shmid, nullptr, 0);if (shmaddr == nullptr){perror("shmat");}std::cout << "who: " << RoleToString(_who) << " attach shm..." << std::endl;return shmaddr;}

一个进程挂接上了为1,两个进程挂接上了为2。
在这里插入图片描述
去掉进程与共享内存的关联的函数:shmdt
在这里插入图片描述
代码如下:

void DetachShm(void *shmaddr){if(shmaddr == nullptr) return;shmdt(shmaddr);std::cout << "who: " << RoleToString(_who) << " detach shm..." << std::endl;}

效果:0-》1-》0
在这里插入图片描述
上面都是准备工作:下面开始通信。
只运行读端:
现象:发现不等写端写入,读端一直在读。
在这里插入图片描述
读端和写端都运行:
现象:写端2秒写一次,读端1秒读1次,数据就有重复。(相比较通道读完数据就没有了)
在这里插入图片描述
读端和写端都运行,然后把写端关闭后再次运行写端:
现象:读端重新读取
在这里插入图片描述
综上所述:与管道不一样,共享内存不提供保护机制。
缺点:会造成数据不一致问题(在纸上写字,写一半被别人拿走了)
优点:共享内存收所有进程IPC,速度最快的。因为共享内存大大减少了数据的拷贝次数。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/154.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

计算机毕业设计Hadoop+大模型旅游推荐系统 旅游景点推荐 旅游可视化 旅游爬虫 景区客流量预测 旅游大数据 大数据毕业设计

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 开题报告 设计&#xff08…

一般无人机和FPV无人机的区别

文章目录 一般无人机的工作原理关键组件&#xff1a;一般无人机的应用领域一般无人机的操控体验 FPV无人机的工作原理关键组件&#xff1a;FPV无人机的应用领域FPV无人机的操控体验性能特点FPV无人机的性能特点 未来无人机发展方向和通信方式拓展 一般无人机的工作原理 一般无…

react基础之redux快速上手环境准备

文章目录 核心概念配置基础环境提交action传参异步状态操作redux调试-devtools配套工具 Redux 是一个状态管理库&#xff0c;通常与 React 一起使用&#xff0c;帮助开发者管理应用的全局状态。它的核心理念是将应用的状态存储在一个单一的、不可变的状态树中&#xff0c;并通过…

OAuth2.0 动态注册客户端

什么是 OAuth 2.0 客户端自动注册&#xff1f; OAuth 2.0 客户端注册通常是在授权服务器的管理界面或通过静态配置文件手动完成的。客户端自动注册是指应用在启动或运行过程中通过代码与 OAuth 2.0 授权服务器交互&#xff0c;自动注册并获取 client_id 和 client_secret 等必…

启纬科技发布6色无源电子纸手机壳InkaceE6

杭州启纬科技有限公司投稿:无源NFC技术的开创者和领导者,杭州启纬科技有限公司于北京时间2024年10月28号正式发布了面向iOS系统和安卓/鸿蒙系统的6色无源电子纸手机壳---InkaceE6系列产品及配套方案。 图1:手机壳高清图 图2:6色与3色、4色效果对比图,海边美女 启纬…

鸿蒙生态下开发挑战-鸿蒙低代码开发工具展望及优势

鸿蒙生态下开发挑战 在鸿蒙生态下开发时&#xff0c;开发者可能会遇到多方面的挑战&#xff0c;这些挑战主要涉及开发工具、技术难度、生态竞争以及市场定位等方面。以下是对这些挑战的详细分析&#xff1a; 一、开发工具不完善 尽管鸿蒙系统的开发工具DevEco Studio在逐步完…

CSS 超出一行省略号...,适用于纯数字、中英文

文本超出显示省略号... 代码&#xff1a; .ellipsis{ overflow: hidden; -webkit-line-clamp:1; text-overflow: ellipsis; display: -webkit-box; -webkit-box-orient: vertical; word-break: break-all; /** 纯数字、中英文都适用 */ }

vscode markdown-image 图片粘贴自动上传到本地目录设置

.vscode/settings.json文件内容 {"markdown-image.base.fileNameFormat": "${hash}-${YY}${MM}${DD}-${HH}${mm}${ss}","markdown-image.local.path": "./images","markdown-image.base.uploadMethod": "Local",…

java设计模式之结构型模式(7种)

结构型模式 描述如何将类或者对象按某种布局组成更大的结构。它分为结构型模式和对象结构型模式&#xff0c;前者采用继承机制来组织接口和类&#xff0c;后者通过组合或聚合来组合对象。 分为7种&#xff1a;代理模式、适配器模式、装饰者模式、桥接模式、外观模式、组合模式、…

Java序列化与反序列化

文章目录 一、Java序列化和反序列化1、序列化和反序列化的含义和用途序列化主要使用场景反序列化漏洞出现的原因 下一期 一、Java序列化和反序列化 1、序列化和反序列化的含义和用途 Java对象&#xff08;存在于内存&#xff09;———序列化——>>字符串/二进制流&…

Vue computed watch

computed watch watch current prev

基于Spring Boot+Vue的助农销售平台(协同过滤算法、限流算法、支付宝沙盒支付、实时聊天、图形化分析)

&#x1f388;系统亮点&#xff1a;协同过滤算法、节流算法、支付宝沙盒支付、图形化分析、实时聊天&#xff1b; 一.系统开发工具与环境搭建 1.系统设计开发工具 后端使用Java编程语言的Spring boot框架 项目架构&#xff1a;B/S架构 运行环境&#xff1a;win10/win11、jdk1…

GetX的一些高级API

目录 前言 一、一些常用的API 二、局部状态组件 1.可选的全局设置和手动配置 2.局部状态组件 1.ValueBuilder 1.特点 2.基本用法 2.ObxValue 1.特点 2.基本用法 前言 这篇文章主要讲解GetX的一些高级API和一些有用的小组件。 一、一些常用的API GetX提供了一些高级…

第三届北京国际水利科技博览会将于25年3月在国家会议中心召开

由中国农业节水和农村供水技术协会、北京水利学会、振威国际会展集团等单位联合主办的第三届北京国际水利科技博览会暨供水技术与设备展&#xff08;北京水利展&#xff09;将于2025年3月31日至4月2日在北京•国家会议中心举办&#xff01; 博览会以“新制造、新服务、新业态”…

基于SpringBoot的学生读书笔记共享的设计与实现

一、项目背景 计算机的普及和互联网时代的到来使信息的发布和传播更加方便快捷。用户可以通过计算机上的浏览器访问多个应用系统&#xff0c;从中获取一些可以满足用户需求的管理系统。网站系统有时更像是一个大型“展示平台”&#xff0c;用户可以选择所需的信息进入系统查看…

org.springframework.boot:type=Admin,name=SpringApplication异常

org.springframework.boot:typeAdmin,nameSpringApplication异常 问题&#xff1a;更换最新版本idea之后&#xff0c;启动springboot项目报错 javax.management.InstanceNotFoundException: org.springframework.boot:typeAdmin,nameSpringApplication idea自动默认的启动设…

Netty核心源码与优化

1.Netty的优化 1.1 使用EventLoop的任务调度 直接使用 channel.writeAndFlush(data) 可能会导致线程切换&#xff0c;这是因为如果当前线程并不是该 Channel 所绑定的 EventLoop 线程&#xff0c;那么 writeAndFlush() 操作会将任务重新提交给关联的 EventLoop 线程执行&#…

CTF之web题集详情随手笔记

《Web安全》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484238&idx1&snca66551c31e37b8d726f151265fc9211&chksmc0e47a12f793f3049fefde6e9ebe9ec4e2c7626b8594511bd314783719c216bd9929962a71e6&scene21#wechat_redirect 1 WEB 1 靶场目…

使用Nginx作为反向代理和负载均衡器

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 使用Nginx作为反向代理和负载均衡器 引言 Nginx 简介 安装 Nginx Ubuntu CentOS 配置 Nginx 作为反向代理 配置 Nginx 作为负载…

【PTA】图的邻接矩阵存储和遍历

图的邻接矩阵存储用一个一维数组存储各顶点数据元素&#xff0c;一个二维数组存储顶点之间的邻接关系。 如上面的无向加权图&#xff0c;顶点数据元素为“A-Z”之间的单个字符&#xff0c;为了使遍历输出结果唯一&#xff0c;要求顶点数据元素按由小到大(ASCII码)的顺序存储。…