C++的初阶模板和STL

C++的初阶模板和STL

在这里插入图片描述

回顾之前的内存管理,我们还要补充一个概念:内存池

也就是定位new会用到的场景,内存池只会去开辟空间。

申请内存也就是去找堆,一个程序中会有很多地方要去找堆,这样子效率会很低下,为了提高程序运行的效率,我们需要建立内存池,多去储存一些内存。

第二种理解方式:因为距离太远了,所需要的成本太高了,需要建立内存池。

在这里插入图片描述

这里再来打个比方,堆相当于妈妈,掌管着财政,家里有你,爸爸,弟弟,妹妹,以前你还没有上大学,用到钱的地方不多,可以直接问妈妈要钱,但是随着你上了大学,发现喝水吃饭洗澡没有一个地方不需要用钱,于是向妈妈要钱的次数变多了,爸爸有工作,需要用钱的地方不多,弟弟妹妹需求也不是很大。所以妈妈直接给了你一笔生活费,从那里面去取着用,这就相当于内存池

在这里插入图片描述

内存管理我们需要注意两个点:

1.不要忘记释放

2.不要错配

不要忘记释放好理解的,我们学过malloc和free都懂,动态开辟内存空间,需要程序员手动释放空间;

不要错配来看一个例子:

#include<iostream>
using namespace std;class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;delete _p;}
private:int _a;int* _p = new int;
};int main()
{
//	/*A* p2 = (A*)operator new(sizeof(A));
//	new(p2)A(10);
//
//	p2->~A();
//	operator delete(p2);*/
//
//	// 1、不要忘记释放
//	// 2、不要交错使用
//	// 
//	//A* p1 = (A*)operator new(sizeof(A));
//	//delete p1;
//
//	/*A* p1 = new A;
//	delete p1;*/
//  
}

在这里插入图片描述

不要用new ,delect的时候,想着用malloc,free混着用

模板初阶

我们先来看一段代码:

如何实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{
int temp = left;
left = right;
right = temp;
}
void Swap(double& left, double& right)
{
double temp = left;
left = right;
right = temp;
}
void Swap(char& left, char& right)
{
char temp = left;
left = right;
right = temp;
}

C语言,函数名必须不同,C++支持函数的重载,函数名可以相同,支持参数不同的,但是上面这三个函数逻辑结构类似,有什么办法简化呢?

答案是模板

模板像做月饼的模子一样,可以工业化生产。

使用函数重载虽然可以实现,但是有一下几个不好的地方:

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增 加对应的函数
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

函数模板

函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生 函数的特定类型版本。

函数模板格式

template<typename T1, typename T2,…,typename Tn>

返回值类型 函数名(参数列表){}

template<typename T>
void Swap( T& left, T& right)
{
T temp = left;
left = right;
right = temp;
}

注意:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替 class)

实现例子如下:

#include <iostream>
using namespace std;
template<class T>
void Swap(T& left, T& right)//注意要大写,否则会跟库里面的函数冲突
{T temp = left;left = right;right = temp;
}
int main()
{int x = 0;int y = 8;Swap(x, y);double m = 1.0;double n = 2.0;Swap(m, n);
}

函数模板的原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。 所以其实模板就是将本来应该我们做的重复的事情交给了编译器

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应 类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演, 将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。

其实模板也就是让编译器去当牛马,函数模板类似于函数的调用

template<class T1, class T2>      // 类型
void Swap(T1& left, T2& right)   // 对象

函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化 显式实例化

  1. 隐式实例化:让编译器根据实参推演模板参数的实际类型

    template<class T>
    T Add(const T& left, const T& right)
    {
    return left + right;
    }
    int main()
    {
    int a1 = 10, a2 = 20;
    double d1 = 10.0, d2 = 20.0;
    Add(a1, a2);
    Add(d1, d2);
    /*
    该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
    通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有
    一个T,
    编译器无法确定此处到底该将T确定为int 或者 double类型而报错
    注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要
    背黑锅
    Add(a1, d1);
    */
    // 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化
    Add(a, (int)d);
    return 0;
    }

    需要注意的是打印结果会有所出入:

    测试代码:

    template<class T>
    T Add(const T& left, const T& right)
    {return left + right;
    }
    int main()
    {//int x = 0;//int y = 8;//Swap(x, y);//double m = 1.0;//double n = 2.0;//Swap(m, n);int a1 = 10;int a2 = 20;double a3 = 10.1;double a4 = 20.2;cout << Add(a1, (int)a3) << endl;cout << Add((double)a1, a3) << endl;}
    

在这里插入图片描述

  1. 显式实例化:在函数名后的<>中指定模板参数的实际类型
int main(void)
{
int a = 10;
double b = 20.0;
// 显式实例化
Add<int>(a, b);
return 0;
}

显示实例化的应用场景:

template <class T>T*Func(size_t n)
{return new T[n];
}
Func<int>(10);
//这里形参没有带模板参数,需要显示实例化,因为没有办法推导

如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

模板参数的匹配原则

  1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这 个非模板函数
// 专门处理int的加法函数
int Add(int left, int right)
{
return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
return left + right;
}
void Test()
{
Add(1, 2); // 与非模板函数匹配,编译器不需要特化
Add<int>(1, 2); // 调用编译器特化的Add版本
}

2.对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而 不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模 板

// 专门处理int的加法函数
int Add(int left, int right)
{
return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
return left + right;
}
void Test()
{
Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的
//Add函数
}
  1. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

类模板

类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
// 类内成员定义
};

拿栈来举例:

#include<iostream>
using namespace std;
// 类模版
template<typename T>
class Stack
{
public:
Stack(size_t capacity = 4)
{
_array = new T[capacity];
_capacity = capacity;
_size = 0;
}
void Push(const T& data);
private:
T* _array;
size_t _capacity;
size_t _size;
};
// 模版不建议声明和定义分离到两个文件.h 和.cpp会出现链接错误
template<class T>
void Stack<T>::Push(const T& data)
{
// 扩容
_array[_size] = data;
++_size;
}
int main()
{
// 实例化生成对应的类,这里是两个不同的类型
Stack<int> st1; // int
Stack<double> st2; // double
return 0;
}

类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的 类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类

// Stack是类名,Stack<int>才是类型
Stack<int> st1; // int
Stack<double> st2; // double

string类

为什么学习string类?

C语言中的字符串

C语言中,字符串是以’\0’结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列 的库函数,但是这些库函数与字符串是分离开的,不太符合OOP的思想,而且底层空间需要用户 自己管理,稍不留神可能还会越界访问。

标准库中的string类

string类(了解)

使用string类时,必须包含#include头文件以及using namespace std;

string类的常用接口说明(注意下面我只讲解最常用的接口)

  1. string类对象的常见构造

在这里插入图片描述

调试代码如下:

int main()
{string s1;string s2("1111122222");string s3("1111111111", 3);//拷贝前3个数据string s4(100, 'x');string s5(s2, 4, 3);//从第四个开始打印三个数string s6(s2, 4);//没有限制,到字符串结尾string s7(s2, 4, 20);//超过长度,依旧是拷贝到字符串结尾cout << s1 << endl;cout << s2 << endl;cout << s3 << endl;cout << s4 << endl;cout << s5 << endl;cout << s6 << endl;cout << s7 << endl;
}

打印结果:

在这里插入图片描述

小小补充:

string的访问

代码:

class string
{
public:char& operator[] (size_t pos){assert(pos < _size);return _str[pos];}
private:char* _str;size_t _size;size_t _capacity;
};
int main()
{
//s2.operator[](0) = 'x';s2[0] = 'x';s2[5] = 'x';cout << s2 << endl;for (size_t i = 0; i < s2.size(); i++){s2[i]++;}cout << s2 << endl;//s2[30];return 0;
}

重载的底层在于断言,这有效防止越界的问题

访问可以做到像数组一样的改变,主要是因为引用,一般的传值返回是传的是拷贝

代码:

class string
{
public:char& operator[] (size_t pos){assert(pos < _size);return _str[pos];}
private:char* _str;size_t _size;size_t _capacity;
};
int main()
{
//s2.operator[](0) = 'x';s2[0] = 'x';s2[5] = 'x';cout << s2 << endl;for (size_t i = 0; i < s2.size(); i++){s2[i]++;}cout << s2 << endl;//s2[30];return 0;
}

重载的底层在于断言,这有效防止越界的问题

访问可以做到像数组一样的改变,主要是因为引用,一般的传值返回是传的是拷贝

模板的学习一定要借助文档,看之前先猜测一下,然后和底下的英文注释做对比

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1539255.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

vue之我不会 计算属性 vuex 路由 插槽

一、计算属性 例子&#xff1a; 注意&#xff1a;调用计算属性时&#xff0c;不可以带括号&#xff0c;那样调用的就是方法&#xff0c;如&#xff1a;以下调用fullName时不可funnName() <div id"root">姓&#xff1a;<input type"text" v-model&…

化妆风格识别系统源码分享

化妆风格识别检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…

[2025]基于微信小程序慢性呼吸系统疾病的健康管理(源码+文档+解答)

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

新手学习python第九天——加速学习

大家周末好&#xff0c;今天是周六北京时间07&#xff1a;50达到实验室&#xff0c;刚刚复习完昨天的内容&#xff0c;今天感冒有所好转&#xff0c;下午课题组有聚餐还是开心的&#xff0c;但今天的学习内容也不要落下。 ————08&#xff1a;24————开始学习———— 1…

SpringCloud微服务实现服务降级的最佳实践

Spring Cloud是一种用于快速构建分布式系统的框架&#xff0c;它提供了许多有用的功能&#xff0c;其中包括服务降级。 服务降级是一种保护机制&#xff0c;它可以在面临高并发或故障时保持服务的稳定性。当系统资源不足或服务出现故障时&#xff0c;服务降级可以通过关闭一些功…

为什么AI在广告投放上受追捧,创意上却饱受非议

AI代表着人类科技的未来&#xff0c;这已经是营销圈的共识&#xff0c;从网络上各个机构的解读来看&#xff0c;AI的奇点似乎正在临近。 AI人工智能对人类社会的震撼有两次标志性的事件&#xff1a;一次是AlphaGo战胜李世石&#xff0c; 我相信大多数人了解人工智能的开始&…

为什么是华为最先做出三折叠?这些黑科技硬核门槛缺一不可

一款起售价19999的手机&#xff0c;预约人数竟达到了600万&#xff0c;全球首款三折叠手机Mate XT到底有什么魔力&#xff0c;可以做到还未上市就引爆市场&#xff1f;看完这篇文章&#xff0c;你就知道何谓“科技新物种”。 9月7日12:08&#xff0c;华为Mate XT非凡大师开启预…

技术贴:电脑端企业微信双开教程!

软件双开的实现&#xff0c;很多小伙伴用的都是修改注册表的方式&#xff0c;这里我再介绍一个办法&#xff1a; 电脑桌面先新建一个 txt 文档&#xff0c;将下方命令全部复制&#xff0c;粘贴在 txt 文件中。 reg add HKEY_CURRENT_USER\Software\Tencent\WXWork /v multi_i…

C++第十二节课 模板初阶和string引入

一、函数模板 我们不需要写具体的函数&#xff0c;而是写这个函数的模板&#xff0c;编译器会根据模板生成对应的函数&#xff1b; template<typename T> template<class T> 两者的作用是等效的&#xff01; 用模板完成的功能有时候也叫泛型编程&#xff1b; …

【分立元件】案例:新人加了个TVS管为什么可能导致系统不能正常工作

因为最近在带多个新人,让其设计原理图和PCB总会发现各种电路问题点。比如TVS管接法问题。 TVS是一种限压型的过压保护器,它将过高的电压钳制至一个安全范围,藉以保护后面的电路,有着比其它保护元件更快的反应时间,这使TVS可用在防护lighting、switching、ESD等快速破坏性瞬…

JAVA虚拟机----JVM

(一)认识JVM JVM 是 Java Virtual Machine 的简称&#xff0c;意为 Java虚拟机。 虚拟机是指通过软件模拟的具有完整硬件功能的、运⾏在⼀个完全隔离的环境中的完整计算机系统。 常⻅的虚拟机&#xff1a;JVM、VMwave、Virtual Box。 &#xff08;二&#xff09;JVM运…

Linux进阶命令-重定向

作者介绍&#xff1a;简历上没有一个精通的运维工程师。希望大家多多关注作者&#xff0c;下面的思维导图也是预计更新的内容和当前进度(不定时更新)。 经过上一章Linux日志的讲解&#xff0c;我们对Linux系统自带的日志服务已经有了一些了解。我们接下来将讲解一些进阶命令&am…

5、PointNeXt

5、PointNeXt PointNeXt论文&#xff1a;PointNeXt 关于PointNeXt实际上仅仅是在PointNet的基础上做了一些改进&#xff0c;从它的全称就可以看出&#xff0c;Revisiting PointNet with Improved Training and Scaling Strategies&#xff0c;在PointNet的基础上&#xff0c;引…

前端常用的主流框架有哪些

前端开发中&#xff0c;有几个主流框架非常受欢迎&#xff0c;它们为开发者提供了丰富的功能和高效的开发体验。以下是一些当前最常用的前端主流框架&#xff1a; React&#xff1a; React 是由 Facebook 开发的一个用于构建用户界面的 JavaScript 库。它鼓励使用组件化的开发模…

O1-preview:智能预测与预取驱动的性能优化处理器设计OPEN AI

# 创作不易&#xff0c;您的打赏、关注、点赞、收藏和转发是我坚持下去的动力&#xff01; O1-preview 是一种用于性能优化的处理器设计原理&#xff0c;主要通过智能预测和数据预取来提升处理器的执行效率。以下是对 O1-preview 原理的详细介绍&#xff0c;以及它相对于以往的…

微波无源器件 功分器 4 一种用于天线阵列的紧凑宽带四路双极化波导功分器

摘要&#xff1a; 一种新型紧凑和高效率&#xff0c;在一个同相2x4方案(四路)显示双极化的功分器的设计和仿真被提出了&#xff0c;两个基本的正交模式TE10和TE01在四个方波导处同相输出通过使用四个3端口个四个E面和两个H面功分结构。此功分末端接了两个商用波导(WR75)端口&am…

插入排序详解

思路 把后面的值&#xff08;temp&#xff09;与前面的值&#xff08;end&#xff09;做对比&#xff0c; 若temp位置的值小于end位置的值&#xff0c; end位置的值给end1位置。。 语言难以描述&#xff0c;请大家看下图。 代码 void InsertSort(int *arr, int n) {/*为了…

django开发流程

一、官方网站&#xff1a; Django documentation | Django documentation | Djangohttps://docs.djangoproject.com/en/5.1/ 1.安装 django : pip install django 2. django项目的配置文件 (settings.py) BASE_DIR 项目根路径 DEBUG 调试模式 INSTALLE…

旷视轻量化网络shufflenet算法解读

目录 预备知识 1. 回顾MobileNet V1的核心思想---深度可分离卷积 2.ShuffleNet主要有两个创新点 2.1 分组卷积与11分组卷积 2.2 channel Shuffle&#xff08;通道重排&#xff09; 2.3 通道重排过程 3. ShuffleNet网络结构 3.1 ShuffleNet unit 3.2 不同分组数的Shu…

AlexNet项目图片分类通用模型代码

目录 一&#xff1a;建立AlexNet模型&#xff08;在model文件中写&#xff09; 1.构造5层卷积层 2.构造3层神经网络层 3.forward函数 4.模型最终代码 二&#xff1a;训练数据&#xff08;在train中写&#xff09; 1.读出数据 2.训练 3. 测试模型更新参数 4.完整的训练…