AI基础 L22 Uncertainty over Time I 时间的不确定性

Time and Uncertainty
1 Time and Uncertainty
States and Observations
• discrete-time models: we view the world as a series of snapshots or time slices
• the time interval ∆ between slices, we assume to be the same for every interval
• Xt: denotes the set of state variables at time t, which we assume to be unobservable
• Et: denotes the set of observable evidence variables: observation at time t is

Transition and sensor models
• The transition model specifies the probability distribution over the latest state variables,
given the previous values: .
• Problem: the set is unbounded in size as t increases.
• Solution: Markov assumption
the current state depends on only a finite fixed number of previous states
• P (Et | Xt) is our sensor model, sensor Markov assumption:

离散时间模型假设时间间隔是恒定的,而马尔可夫假设允许我们处理状态的无限序列,同时保持模型的可管理性。传感器模型则描述了如何将不可观测的状态变量转换为可观测的证据变量。

• the prior probability distribution at time 0, P (X0).

• Umbrella World: first-order Markov process—–the probability of rain is assumed to
depend only on whether it rained the previous day
• The first-order Markov assumption says that the state variables contain all the
information needed to characterize the probability distribution for the next time
slice.
• Ways to improve the accuracy of the approximation
— Increasing the order of the Markov process mode
— Increasing the set of state variables

先验概率分布(prior probability distribution)是概率论中的一个重要概念,用于描述在没有任何额外信息的情况下,某一事件或状态的概率分布。

在时间序列分析中,特别是马尔可夫过程(Markov process)中,概率分布随着时间的推移而变化。对于从时间 0 到时间 t 的整个序列,概率分布可以表示为:

P(X0:t, E1:t) = P(X0) * ∏i=1 P(Xi | Xi−1) * P(Ei | Xi)

这里:

  • P(X0:t, E1:t) 是从时间 0 到时间 t 的状态变量 X0:t 和观测证据变量 E1:t 的联合概率分布。
  • P(X0) 是时间 0 的先验概率分布,即在没有任何观测信息的情况下,状态变量 X0 的概率分布。
  • ∏i=1 P(Xi | Xi−1) 是状态变量 Xi 基于前一个状态 Xi−1 的条件概率分布的乘积,表示状态的马尔可夫性质。
  • P(Ei | Xi) 是观测证据变量 Ei 基于状态变量 Xi 的条件概率分布,表示观测模型。

在“Umbrella World”示例中,我们假设雨天的概率只依赖于前一天是否下雨,这是一个一阶马尔可夫过程。一阶马尔可夫假设意味着状态变量包含了描述下一时间片概率分布所需的所有信息。

为了提高这个近似的准确性,可以采取以下方法:

  • 增加马尔可夫过程的阶数:从一阶到更高阶,增加过程的记忆长度。
  • 增加状态变量的集合:添加更多的状态变量来描述系统的复杂性。

通过增加马尔可夫过程的阶数和状态变量的数量,可以更准确地捕捉系统随时间变化的动态特性,从而提高概率分布的准确性。

Inference in Temporal Models
• Formulate the basic inference tasks that must be solved:
Filtering or state estimation is the task of computing the belief state P (Xt | e1:t)
Prediction: This is the task of computing the posterior distribution over the future
state, given all evidence to date.
Smoothing: This is the task of computing the posterior distribution over a past state,
given all evidence up to the present
Most likely explanation: Given a sequence of observations, we might wish to find the
sequence of states that is most likely to have generated those observations
• Besides inference tasks:
Learning: The transition and sensor models, if not yet known, can be learned from observations

  1. 过滤或状态估计(P(Xt | e1:t)):

    • 这项任务是指根据到目前为止收集的所有证据(观测)来计算系统当前状态(在时间t)。信念状态P(Xt | e1:t)代表我们对状态Xt的最佳估计,基于证据的历史。这就像在新数据到来时更新我们对系统状态的知识。
  2. 预测:

    • 预测是关于展望未来。它涉及到基于到目前为止的所有证据来计算未来某个时间(Xt+n)的状态的后验分布。这对于预测系统中接下来可能发生的事情非常有用。
  3. 平滑:

    • 平滑是使用额外的后续观测来改进我们对过去状态的估计的过程。它计算给定到目前为止所有证据(e1:t)的过去状态Xt-n的后验分布。这就像利用当前的知识回顾过去,以更好地理解过去发生了什么。
  4. 最可能的解释:

    • 给定一系列观测,这项任务涉及到找出最可能产生那些观测的状态序列。它用于识别最可能导致观测数据的潜在原因的状态路径,这对于理解观测的根本原因很有帮助。

除了这些推理任务之外,还有学习方面:

  • 学习:
    • 学习是指如果转换模型和传感器模型尚未知晓,则使用观测数据来确定时间模型的参数。这涉及到使用观测数据来估计转换模型(状态随时间如何演变)和传感器模型(如何从状态生成观测)。学习这些模型对于准确推理至关重要,因为推理的质量在很大程度上取决于这些模型的准确性。

 Filtering messages
We can think of the filtered estimate P (Xt | e1:t) as a “message” f1:t:
• Propagated forward along the sequence
• Modified by each transition
• Updated by each new observation
So that
        f1:t+1 = Forward(f1:t, et+1)
We bootstrap the process with f1:0 = P (X0)

滤消息可以理解为对过滤估计P(Xt | e1:t)作为一种“消息”f1:t的处理过程:

  • 这种消息沿着序列向前传播。
  • 每次状态转移时,消息都会被修改。
  • 每次有新的观测时,消息都会被更新。

因此,我们可以用以下方式表示这个过程:         f1:t+1 = Forward(f1:t, et+1) 这里的f1:t+1表示在时间t+1时的更新后的消息,Forward是一个操作,它将时间t的消息f1:t和新的观测et+1结合起来,得到时间t+1的消息。

我们通过以下方式启动这个过程:         f1:0 = P(X0) 中文解释如下:

  • 我们可以将过滤估计P(Xt | e1:t)视为一种“消息”f1:t。
  • 这种消息会沿着时间序列向前传递。
  • 每当发生状态转移时,这个消息都会被调整。
  • 每当接收到新的观测数据时,这个消息都会被更新。

因此,我们有以下关系:         f1:t+1 = Forward(f1:t, et+1) 这里的f1:t+1表示在时间t+1时的更新后的消息,Forward是一个函数,它将时间t的消息f1:t和新的观测数据et+1结合起来,以生成时间t+1的消息。

这个过程是从以下初始条件开始的:         f1:0 = P(X0) 这里的f1:0表示在没有任何观测数据之前,对初始状态X0的先验概率分布。这是整个过滤过程的起点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1536151.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【初阶数据结构】排序

目录 一、排序的概念及其运用 1.1排序的概念 1.2常见的排序算法 二、常见排序算法的实现 2 .1插入排序 2 .1.1基本思想: 2.1.2直接插入排序: 算法复杂度: 最坏情况: 最好的情况: 直接插入排序的特性总结&…

Unity实战案例全解析:PVZ 植物放置分析

前篇:Unity实战案例全解析:PVZ 植物卡片状态分析-CSDN博客 植物应该如何从卡牌状态转为实物? 其实就只需要考虑两个步骤加一个后续处理: 1.点击卡牌后就实例化 需要一个植物状态枚举,因为卡牌分为拿在手上和种植下…

大众点评代发收录

大众点评代发收录 大众点评的代运营到底靠谱不靠谱?擦亮你的眼睛,别再被割韭菜了。#代运营 #永善 #干货分享 #大众点评运营 #美团运营 你的网站被百度搜录了吗?普京说过,给我 20 年,还你一个强大的俄罗斯。那么狂潮老…

SAP HCM HR_ABS_ATT_TIMES_AT_ENTRY 跨夜班不生效问题

导读 跨夜班标准函数不生效:今天客户提出一个问题,计算请假时长不生效的问题(微信小程序调用SAP接口),但是在PA30中能正确计算,所以问题肯定就是在调用标准函数的时候,参数设置问题&#xff0c…

20Kg载重30分钟续航多旋翼无人机技术详解

一、机架与结构设计 1. 材料选择:为了确保无人机能够承载20Kg的负载,同时实现30分钟的续航,其机架材料需选用轻质高强度的材料,如碳纤维或铝合金。这些材料不仅具有良好的承重能力,还能有效减轻无人机的整体重量&…

【linux基础】linux中的开发工具(4)--调试器gdb的使用

目录 前言一,背景二,gdb的使用1. 启动 gdb 调试器:2. 罗列代码信息3. 运行程序4. 有关断点的操作(1) 打断点(2) 查看断点(3) 删除断点(4) 在一次调试中,断点是递增的(5) 关闭断点(6) 开启断点(7) 逐过程调试,相当于 F1…

Redis模拟消息队列实现异步秒杀

目录 一、消息队列含义 二、Redis实现消息队列 1、基于List的结构模拟实现消息队列 2、基于PubSub的消息队列 3、基于Stream的消息队列 4、基于Stream的消息队列- 消费者组 一、消息队列含义 消息队列(Message Queue),字面意思就是存放…

MyBatis中一对多关系的两种处理方法

目录 1.多表联查(通过collection标签的ofType属性) 1)mapper 2)mapper.xml 3)测试代码 4)测试结果 2.分布查询(通过collection标签的select属性) 1)mapper 2)mapper.xml 3&#xff0…

优化算法(三)—模拟退火算法(附MATLAB程序)

模拟退火算法(Simulated Annealing, SA)是一种基于概率的优化算法,旨在寻找全局最优解。该算法模拟金属退火过程中的物质冷却过程,逐渐降低系统的“温度”以达到全局优化的效果。它特别适用于解决复杂的组合优化问题。 一、模拟退…

[产品管理-21]:NPDP新产品开发 - 19 - 产品设计与开发工具 - 详细设计与规格定义

目录 前言: 一、详细设计与规格定义概述 1、产品详细设计 2、规格定义 3、详细设计与规格定义的关系 4、实际应用中的注意事项 二、详细设计与规格定义主要工具 2.1 质量功能展开QFD - 需求跟踪矩阵 1、QFD的基本原理 2、QFD的实施步骤 3、QFD的优势与应…

人工智能开发实战matplotlib库应用基础

内容导读 matplotlib简介绘制直方图绘制撒点图 一、matplotlib简介 matplotlib是一个Python 2D绘图库,它以多种硬拷贝格式和跨平台的交互式环境生成高质量的图形。 matplotlib 尝试使容易的事情变得更容易,使困难的事情变得可能。 我们只需几行代码…

解锁全球机遇:澳大利亚服务器租用市场的独特魅力

在浩瀚的全球数字版图中,澳大利亚以其独特的地理位置、丰富的资源禀赋、以及日益增长的数字经济活力,成为了众多互联网企业竞相布局的重要市场。特别是当谈及服务器租用这一关键环节时,澳大利亚以其稳定的网络环境、先进的基础设施和开放的市…

[数据集][目标检测]智慧交通铁路异物入侵检测数据集VOC+YOLO格式802张7类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):802 标注数量(xml文件个数):802 标注数量(txt文件个数):802 标注类别…

知识竞赛活动舞台搭建要多少钱

每次举办活动,舞台搭建总是让人头疼的一部分,尤其是费用问题。今天就来揭开活动舞台搭建费用的神秘面纱。 活动舞台搭建的费用主要包括舞台结构、设备、音响、灯光、舞美装饰等各方面的成本。具体来说: 1.舞台结构:包括舞台平台…

5.TensorBoard的使用(二)--add_image()

TensorBoard的使用(二) 1.使用add_image()给添加图片 首先导入Tensorboard包 from torch.utils.tensorboard import SummaryWriter创建一个SummaryWriter类的实例,并将所有的事件文件保存在logs文件夹中 writer SummaryWriter(logs)使用add…

完整版订单超时自动取消功能

前几天对实习还是继续学习技术产生了抉择,问了一个前辈,他抛给我一个问题,怎么做15分钟订单自动取消,我说然后到时间之后,自动执行这个订单关闭业务,比如把锁了的库存给解开等等操作,然后在数据…

【算法篇】哈希类(笔记)

目录 一、常见的三种哈希结构 二、LeetCode 练习 1. 有效的字母异位词 2. 两个数组的交集 3. 快乐数 4. 两数之和 5. 四数相加II 6. 赎金信 7. 三数之和 8. 四数之和 一、常见的三种哈希结构 当想使用哈希法来解决问题的时候,一般会选择如下三种数据…

4.接口测试基础(Jmter工具/场景二:一个项目由多个人负责接口测试,我只负责其中三个模块,协同)

一、场景二:一个项目由多个人负责接口测试,我只负责其中三个模块,协同 1.什么是测试片段? 1)就相当于只是项目的一部分用例,不能单独运行,必须要和控制器(include,模块)一…

C++——哈希unordered_set/unordered_map的封装

目录 前言 二、unordered_set的封装 1.模板参数列表的改造 2. 增加迭代器操作 3. 模板参数的意义 三、unordered_map的封装 1、“轮子所需要的参数 2、迭代器 四、完整代码 1、HashTable 2、unordered_set 3、unordered_map 总结 前言 unordered_set和map的介绍在上一篇博客有…

2、.Net 前端框架:ASP.Net Core - .Net宣传系列文章

ASP.NET Core 是一个跨平台、高性能、开源的框架,用于构建现代化的、基于云的、互联网连接的应用程序。它是微软对原始ASP.NET框架的重构和扩展,提供了更多的灵活性和改进的性能。ASP.NET Core 可以用于开发Web应用程序、Web API、以及服务端渲染的Web页…