Elman 神经网络 MATLAB 函数详解

Elman 神经网络 MATLAB 函数详解

一、引言

Elman 神经网络是一种在时间序列分析和动态系统建模领域广泛应用的递归神经网络(RNN)。MATLAB 提供了一系列强大的函数来创建、训练和应用 Elman 神经网络,使得用户能够方便地利用其处理具有时间序列特性的数据。本文将详细介绍 MATLAB 中与 Elman 神经网络相关的函数,包括它们的语法、参数含义、使用示例以及在不同应用场景中的应用。

二、MATLAB 中 Elman 神经网络相关函数

(一)创建 Elman 神经网络对象:newelm 函数

  1. 函数语法
    net = newelm(P,T,S,TF,BTF,BLF,PF)
  2. 参数详解
    • P(输入向量范围矩阵):它是一个 Rx2 的矩阵,R 表示输入向量的维数。每一行指定了对应输入元素的最小值和最大值范围。例如,如果输入是二维向量,第一个维度范围是 [0, 10],第二个维度范围是 [ - 5, 5],则 P[0 10; - 5 5]。以下是生成输入向量范围矩阵的示例代码:
% 假设输入数据有 3 个维度,这里随机生成范围
input_dim = 3;
min_values = rand(1, input_dim) - 0.5;
max_values = rand(1, input_dim) + 0.5;
P = [min_values; max_values]';
- **T(目标输出向量范围矩阵)**:与 `P` 类似,`T` 是一个 `Sx2` 的矩阵,用于指定目标输出向量的范围,`S` 是目标输出向量的维数。如果目标输出是一维的,范围是 `[ - 1, 1]`,则 `T` 为 `[ - 1 1]`。- **S(隐含层神经元数量)**:指定 Elman 神经网络隐含层中神经元的个数。例如,设置 `S = 10` 表示隐含层有 10 个神经元。隐含层神经元数量的选择通常需要根据具体问题和数据特点进行调整,一般通过实验来确定合适的值。- **TF(神经元传递函数)**:可以是一个字符串数组,用于指定网络中神经元的激活函数类型。对于隐含层和输出层,可以选择不同的激活函数。常见的激活函数包括 `'logsig'`(对数 Sigmoid 函数)、`'tansig'`(双曲正切 Sigmoid 函数)、`'purelin'`(线性函数)等。例如,设置隐含层激活函数为双曲正切 Sigmoid 函数,输出层为线性函数,可以使用 `TF = {'tansig', 'purelin'}`。- **BTF(训练函数)**:指定网络的训练算法,如 `'trainlm'`(Levenberg - Marquardt 算法)、`'traingdx'`(带动量的梯度下降算法)等。不同的训练函数有不同的特点,`'trainlm'` 通常收敛速度快,但需要更多的内存;`'traingdx'` 相对更稳定。例如,使用 `'trainlm'` 训练函数,设置 `BTF = 'trainlm'`。- **BLF(性能函数)**:用于评估网络性能的函数,一般使用均方误差函数 `'mse'`(mean - squared error),即 `BLF ='mse'`。- **PF(参数显示函数)**:用于在训练过程中显示网络参数的信息,如 `'plotperform'`(显示训练性能)、`'plottrainstate'`(显示训练状态)等。例如,设置 `PF = 'plotperform'`,在训练过程中可以直观地看到训练误差的变化情况。
  1. 代码示例
    以下是创建一个简单 Elman 神经网络的代码:
% 定义输入向量范围,假设输入是二维数据,范围在[0,1]区间
P = [0 1; 0 1]';
% 目标输出范围,假设是一维数据,范围在[-1,1]
T = [-1 1];
% 隐含层神经元数量
S = 5;
% 激活函数,隐含层用'tansig',输出层用'purelin'
TF = {'tansig', 'purelin'};
% 训练函数
BTF = 'trainlm';
% 性能函数
BLF ='mse';
% 参数显示函数
PF = 'plotperform';net = newelm(P, T, S, TF, BTF, BLF, PF);

(二)训练 Elman 神经网络:train 函数

  1. 函数语法
    [net,tr] = train(net,X,T)
  2. 参数详解
    • net(已创建的 Elman 神经网络对象):由 newelm 函数创建的网络对象,包含了网络的结构、初始参数等信息。
    • X(输入训练数据矩阵):它是一个 QxR 的矩阵,其中 Q 表示训练样本的数量,R 表示输入向量的维数。即每个训练样本按行排列在矩阵中。例如,如果有 100 个二维训练样本,X 的大小为 100x2。以下是生成模拟训练数据的示例代码:
% 生成 100 个二维训练样本
num_samples = 100;
input_dim = 2;
X = rand(num_samples, input_dim);
- **T(目标输出训练数据矩阵)**:它是一个 `QxS` 的矩阵,`Q` 是训练样本数量,`S` 是目标输出向量的维数。每个训练样本对应的目标输出按行排列。例如,如果目标输出是一维的,对于 100 个训练样本,`T` 的大小为 `100x1`。如果目标输出是与输入样本相关的某个计算结果,可以根据具体情况生成。例如,假设目标输出是输入样本两个维度之和,可以使用以下代码生成:
T = sum(X, 2).reshape(-1, 1);
- **返回值**:`net` 返回训练后的网络对象,其参数(如权重等)已经根据训练数据进行了调整;`tr` 是一个结构体,包含了训练过程的相关信息,如训练步数、性能指标等,可以用于后续分析训练效果。
  1. 代码示例
    以下是使用前面创建的网络进行训练的代码,假设已经有合适的训练数据 X_trainT_train
[net, tr] = train(net, X_train, T_train);

(三)模拟 Elman 神经网络的输出:sim 函数

  1. 函数语法
    Y = sim(net,X)

  2. 参数详解

    • net(训练好的 Elman 神经网络对象):经过 train 函数训练后的网络,具备了对输入数据进行处理和输出预测的能力。
    • X(输入测试数据矩阵):格式与训练数据矩阵 X 类似,是一个 MxR 的矩阵,其中 M 是测试样本的数量,R 是输入向量的维数。例如,如果有 50 个二维测试样本,X 的大小为 50x2
    • Y(输出预测数据矩阵):它是一个 MxS 的矩阵,M 是测试样本数量,S 是目标输出向量的维数,即网络对每个测试样本的输出预测结果。
  3. 代码示例
    以下是使用训练好的网络对新的测试数据进行预测的代码:

% 假设已经有测试数据 X_test
Y_pred = sim(net, X_test);

三、Elman 神经网络在 MATLAB 中的应用示例

(一)时间序列预测示例

  1. 数据准备
    假设我们要预测一个简单的正弦波时间序列数据。首先生成训练数据和测试数据:
% 生成时间序列数据点
t = 0:0.1:20;
sin_wave = sin(t);% 构建训练数据,以过去 5 个时间点预测下一个时间点的值
input_data = [];
target_data = [];
for i = 5:length(t)input_data = [input_data; sin_wave(i - 4:i)'];target_data = [target_data; sin_wave(i)];
end% 划分训练集和测试集
train_ratio = 0.8;
train_size = floor(train_ratio * length(input_data));
X_train = input_data(1:train_size, :);
T_train = target_data(1:train_size, :)';
X_test = input_data(train_size + 1:end, :);
T_test = target_data(train_size + 1:end, :)';
  1. 网络创建、训练与预测
% 创建 Elman 神经网络
P = [min(X_train(:)) max(X_train(:)); min(X_train(:)) max(X_train(:)); min(X_train(:)) max(X_train(:)); min(X_train(:)) max(X_train(:)); min(X_train(:)) max(X_train(:))]';
T = [min(T_train(:)) max(T_train(:))];
S = 10;
TF = {'tansig', 'purelin'};
BTF = 'trainlm';
BLF ='mse';
PF = 'plotperform';
net = newelm(P, T, S, TF, BTF, BLF, PF);% 训练网络
[net, tr] = train(net, X_train, T_train);% 预测
Y_pred = sim(net, X_test);
  1. 性能评估
    可以使用以下代码评估预测结果的准确性,例如计算均方误差:
mse_value = mean((Y_pred - T_test').^2);
disp(['均方误差: ', num2str(mse_value)]);

(二)系统建模示例(以简单的非线性动态系统为例)

  1. 系统定义与数据生成
    考虑一个简单的非线性动态系统:y(k + 1)=0.8*y(k)+0.2*y(k - 1)+u(k)+0.3*u(k - 1),其中 u(k) 是输入,y(k) 是输出。生成训练数据和测试数据:
% 生成输入序列
u = rand(200, 1);
% 初始化输出序列
y = zeros(200, 1);
for k = 2:200y(k) = 0.8*y(k - 1) + 0.2*y(k - 2) + u(k) + 0.3*u(k - 1);
end% 构建训练数据,以当前和前一个输入、输出预测下一个输出
input_data = [y(1:199) y(2:200) u(1:199) u(2:200)];
target_data = y(2:200);% 划分训练集和测试集
train_ratio = 0.8;
train_size = floor(train_ratio * length(input_data));
X_train = input_data(1:train_size, :);
T_train = target_data(1:train_size, :)';
X_test = input_data(train_size + 1:end, :);
T_test = target_data(train_size + 1:end, :)';
  1. 网络创建、训练与预测
% 创建 Elman 神经网络
P = [min(X_train(:)) max(X_train(:)); min(X_train(:)) max(X_train(:)); min(X_train(:)) max(X_train(:)); min(X_train(:)) max(X_train(:))]';
T = [min(T_train(:)) max(T_train(:))];
S = 15;
TF = {'tansig', 'purelin'};
BTF = 'trainlm';
BLF ='mse';
PF = 'plotperform';
net = newelm(P, T, S, TF, BTF, BLF, PF);% 训练网络
[net, tr] = train(net, X_train, T_train);% 预测
Y_pred = sim(net, X_test);
  1. 性能评估
    同样计算均方误差来评估模型对非线性动态系统的建模能力:
mse_value = mean((Y_pred - T_test').^2);
disp(['均方误差: ', num2str(mse_value)]);

四、总结

MATLAB 中的 Elman 神经网络函数为用户提供了一个方便、高效的平台来处理时间序列和动态系统相关的问题。通过 newelm 函数创建网络结构,train 函数训练网络以调整参数,sim 函数进行预测输出,再结合合适的数据准备和性能评估方法,可以有效地应用 Elman 神经网络解决实际问题。在使用过程中,需要根据具体问题的特点合理选择网络参数,如隐含层神经元数量、激活函数、训练函数等,以获得最佳的性能。同时,通过分析训练过程中的信息和预测结果的评估,可以进一步优化网络模型,提高预测或建模的准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/15101.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

DELL Precision 系列默认用的都是非ECC内存

文章目录 DELL Precision 系列默认用的都是非ECC内存概述SSD升级SSD1SSD2 笔记DELL Precision 系列默认用的都是非ECC内存可以选非ECC的内存 备注备注如果不差钱备注END DELL Precision 系列默认用的都是非ECC内存 概述 去了一次DELL维修中心,清了一次灰。人工真贵…

Linux基础(2)以及资源耗尽病毒的编写(详见B站泷羽sec)

免责声明:本教程作者及相关参与人员对于任何直接或间接使用本教程内容而导致的任何形式的损失或损害,包括但不限于数据丢失、系统损坏、个人隐私泄露或经济损失等,不承担任何责任。所有使用本教程内容的个人或组织应自行承担全部风险。 Linux…

20241114软考架构-------软考案例15答案

每日打卡题案例15答案 15.【2016年真题】 难度:一般 阅读以下关于应用服务器的叙述,在答题纸上回答问题1至问题3。(25分) 【说明】 某电子产品制造公司,几年前开发建设了企业网站系统,实现了企业宣传、产品…

【LeetCode】每日一题 2024_11_14 统计好节点的数目(图/树的 DFS)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动! 题目:统计好节点的数目 代码与解题思路 先读题:题目要求我们找出好节点的数量,什么是好节点?“好节点的所有子节点的数量都是相同的”,拿示例一…

HarmonyOs DevEco Studio小技巧29--ArkTS文字如何渐变

这是需求 昨天想了老多方法 一开始以为加上线性渐变这个属性就好了 Entry Component struct TextTest {State message: string 中华人民共和国万岁;build() {RelativeContainer() {Text(this.message).id(TextTestHelloWorld).fontSize(33).fontWeight(FontWeight.Bold).alig…

块设备 - 想进阶的必经之路!

在Linux内核开发的世界中,块设备(Block Device)是一块不可忽视的领域。它承载了文件系统的运行,管理着磁盘存储的核心逻辑,是初学者迈向内核进阶的重要知识点。本篇文章将用通俗易懂的语言,为你揭开块设备的…

高鑫零售实现扭亏为盈,逆市增长的高鑫零售未来何在?

大润发母公司高鑫零售发布截至9月30日的2025财年中期业绩报告:营收347.08亿元人民币,税后溢利1.86亿元,同比增加5.64亿元,实现扭亏为盈,高鑫零售的成绩单我们该如何分析? 首先,整体来看&#x…

AI绘画如何赚钱?分享5个简单,易上手的实用性案例

近年来,人工智能(AI)技术在各个领域都取得了巨大的突破,其中之一就是AI绘画。通过分享一些令人兴奋的应用与变现案例,我们可以深入了解AI绘画的实际应用,以及它如何改变了传统艺术创作和商业模式。 在接下…

如何在 Ubuntu 上安装 RStudio IDE(R语言集成开发环境) ?

RStudio 是一个功能强大的 R 语言集成开发环境(IDE),R 是一种主要用于统计计算和数据分析的编程语言。任何从事数据科学项目或任何其他涉及 R 的类似任务的人,RStudio 都可以使您的工作更轻松。 本指南将引导您完成在 Ubuntu 系统上安装 RStudio 的过程…

C++玩转物联网:认识树莓派Pico

在嵌入式编程的领域中,树莓派Pico、Arduino和ESP32都是广受欢迎的微控制器开发板,但它们在性能、功能和编程语言支持上各有特点。树莓派Pico是树莓派基金会推出的一款高性价比开发板,搭载了RP2040微控制器,支持标准的C库&#xff…

网络基础 - 网段划分篇

我们知道,IP 地址(IPv4 地址)由 “网络标识(网络地址)” 和 “主机标识(主机地址)” 两部分组成,例如 192.168.128.10/24,其中的 “/24” 表示从第 1 位开始到多少位属于网络标识,那么,剩余位就属于主机标识了&#xf…

当微软windows的记事本被AI加持

1985年,微软发布了Windows 1.0,推出了一款革命性的产品:记事本(Notepad)。这款软件旨在鼓励使用一种未来主义的新设备——鼠标,并让人们可以不依赖VI等键盘工具就能书写文本和编写代码。记事本因其简洁和高…

FastGPT + Dify,本地知识库快速部署!

本文主要内容 本地部署 Dify、FastGPT、OllamaDify、FastGPT 对接一些目前免费的 LLM 大语言 AI 模型Dify、FastGPT 对接 Ollama 本地模型 大家好,我是一名喜欢在家折腾本地部署的开发者,这次我来分享如何在本地运行 Ollama,并将它与 FastG…

黄仁勋对话孙正义:日本的AI新饼、Arm的AI野心与英伟达的东亚新机会

2020 年的软银世界大会上,孙正义与黄仁勋围绕「What’s Next for AI」展开了一次围炉对谈。黄仁勋穿着标志性的皮夹克坐在火堆旁,畅谈了将 Arm 纳入麾下的重要价值,孙正义也毫不吝啬赞美之词,称老黄在未来 10 年会达到史蒂夫 乔布…

什么是邻道泄露抑制比(ACLR)

今天和大家一起学习交流下邻道泄露抑制比(ACLR)指标,看看是否 让你产生一些新的灵感。 什么是ACLR? 邻道泄露抑制比是用于衡量下行的发射性能,是主信道的发射功率与测得的相邻信道的功率之比。ACLR值越低,表示相临信道的功率的干扰越小,说明系统的性能越好。一般用dB…

VMware和CentOS 7.6 Linux操作系统的安装使用

1. 安装VMware 安装VMware之前,有些电脑是需要去BIOS里修改设置开启cpu虚拟化设备支持才能安装。如果运气不好在安装过程中安装不了的话就自行百度吧。 打开 VMware 的官网: https://www.vmware.com/ 点击 product,往下滑找到 see desktop hypeerviso…

沈阳乐晟睿浩科技有限公司抖音小店保障

在当今这个数字化时代,电子商务行业以其便捷性、高效性和广泛的覆盖面,成为了推动经济发展的新引擎。沈阳乐晟睿浩科技有限公司,作为这股变革洪流中的佼佼者,凭借其深厚的技术实力、敏锐的市场洞察力和前瞻性的战略布局&#xff0…

学习日志009--面向对象的编程

一、面向对象 面向对象编程(Object-Oriented Programming,简称OOP)是一种编程范式,它使用“对象”来设计应用程序和计算机程序。它利用了抽象、封装、继承和多态这些概念。 一、面向对象编程的核心概念 封装(Encaps…

Sorvall Legend Micro 17 微量离心机产品特性

在科研实验中,微量离心机扮演着至关重要的角色。其中,Thermo Scientific Sorvall Legend MicroCL 17R 微量离心机凭借其出色的性能和紧凑的设计,成为众多科研人员的首选。 这款微量离心机体积小巧,非常适合空间有限的实验室。它支…

Camp4-L2:InternVL 多模态模型部署微调实践

书生浦语大模型实战营第四期:InternVL 多模态模型部署微调实践 教程链接:https://github.com/InternLM/Tutorial/tree/camp4/docs/L2/InternVL视频链接:https://www.bilibili.com/video/BV1nESCYWEnN/任务链接:https://github.co…