QT商业播放器

QT商业播放器

总体架构图

在这里插入图片描述

架构优点:解耦,采用生产者消费者设计模式,各个线程各司其职,通过消息队列高效协作

这个项目是一个基于ijkplayer和ffplayer.c的QT商业播放器,
项目有5部分构成:
前端QT用户界面
后端是集成了ffplayer.c的类--播放的核心逻辑,
中间层有3个模块,一是ijkmp类-暴露给前后端向消息队列发消息,二是参考ijkplayer实现的单链表消息队列,三是用QThread启动的消息循环线程--循环取消息处理业务下面我来依次说明这些模块:

QT界面

用户界面设计

基本机制

利用QT的信号和槽函数机制,界面事件触发后向消息队列发送消息

  1. 界面元素事件绑定信号
  2. 信号绑定槽函数
  3. 槽函数向消息队列发送对应事件的消息,通知ffplay开始工作
  4. ffplay将视频画面回调到qt界面,声音回调到SDL音频播放流
  5. ffplay内部通过各个信号量控制工作流状态,响应消息只需要调用接口改变ffplay内部的各个信号量即可

元素事件包括:

  • 播放,暂停,停止

  • 快进,快退(按钮seek)

  • 进度条seek

  • 音量控制

  • 文件路径

后端ffplay类

播放器的播放逻辑–一个播放器真正的灵魂部分

主要接口

主要接口就是stream_open(),和stream_close()

  • stream_open负责启动线程和各个队列
  • stream_close负责关闭线程并且回收资源

主要工作流程

  • 解复用线程将从媒体文件中解出来的原始码流包插入到音频包队列和视频包队列

    1.创建解复用上下文结构体(对文件数据的格式化)avformat_alloc_context
    2.打开文件,主要是探测协议类型avformat_open_input
    3.探测媒体类型,可得到当前文件的封装格式,音视频编码参数等信息avformat_find_stream_info
    4.获取音频和视频流标志--为了5划分包av_find_best_stream
    5.【循环】读取媒体数据,得到的是音视频分离后、解码前的数据包,将数据包插入到对应的包队列av_read_framevideo_packet_queue.pushaudio_packet_queue.push
    
  • 2个解码线程从对应包队列中拿到包数据,由对应的解码器解码出帧数据,将音频帧插入到音频帧队列,视频帧插入到视频帧队列

    1.创建解码上下文avcodec_alloc_context3
    2.从解复用上下文中获取码流的信息,并绑定到解码上下文中avcodec_parameters_to_context
    3.配置解码器,根据对应码流的格式配置(codec_id)avcodec_find_decoder
    4.初始化解码器avcodec_open2
    5.【循环】从包队列中获取包,将包丢到解码器,解码出帧数据,加入到帧队列【视频解码线程】video_packet_queue.getavcodec_send_packetavcodec_receive_framevideo_frame_queue.push【音频解码线程】audio_packet_queue.getavcodec_send_packetavcodec_receive_frameaudio_frame_queue.push
    
  • 播放线程从帧队列中拿到帧数据,经过音视频同步后,视频帧数据回调到qt的Widget容器,绘制出画面;音频数据回调到SDL音频播放函数

    【音频播放线程】
    1.初始化音频设备SDL_OpenAudio
    2.配置数据回调函数【循环】取帧队列数据拷贝到SDL音频播放流中audio_frame_queue.get【视频播放线程】
    1.配置QT显示窗口painter.drawImage
    2.获取队列当前Frame,使用ffmpeg的Scale3转换算法将frameYUV格式图像统一转为RGB格式图像,调用QT显示窗口的刷新回调函数video_frame_queue.get视频同步音频:计算音视频pts差,设置阈值,大于渲染上一帧,小于丢帧Scale3video_refresh_callback
    

亮点

缓存队列

这个部分有2部分队列,包队列和帧队列

包队列

包队列是原始码流包的缓存队列

2个帧队列
H264码流包队列NALU包:由分割符(00 00 00 01)、头信息、压缩数据构成AAC码流包队列ADTS包:由分隔符(0xFFF)、头信息、压缩数据构成

PacketQueue 是一个链表队列

  • 内存充足情况下:可以不限制将数据包放入队列中,不需要考虑队列的大小。

  • 控制队列大小:如果我们需要控制队列的大小,我们可以使用以下三个变量来限制队列节点的数量:

    size:控制队列中数据包的总大小。

    duration:控制队列中数据包的总播放时间。

    nb_packets:控制队列中数据包的数量。

    在ffplay中,限制所有队列总大小为:15mb
    这是一个经验数值,大概能缓存4k视频2.4s左右而我在设计的时候直接用的各队列播放时间<2.4s控制即可
    超过就队满,不让存包数据,限制队列大小
    
帧队列

帧队列是解码后的可播放音视频数据

视频帧队列每一帧都是YUV格式图像数据音频帧队列每一帧都是PCM采样帧流数据

FrameQueue是一个循环数组队列

  • 数组队列适合于事先明确了缓冲区的最⼤容量的情形

  • 避免假队空----定义一个size

  • 写端位于解码线程,读端位于播放线程

  • 设置互斥锁机制—线程安全

在ffplay中:一般设置为音频队列最大9帧,视频队列最大3帧因为缓存的是解码后的帧,所以队列不能设置过大,过大容易爆内存,通常是缓存一个比较小的值

ijk播放器核心类

里面维护一个消息队列和真正的播放器ffplayer

ijk播放器核心类暴露给前端的接口都是往消息队列中插入消息,不会直接操作ijkplayer。

比如开始播放,暂停,seek等,都是前端调用ijkmp暴露给前端的接口,向消息队列中插入消息,然后在消息循环线程取消息时,在消息分发过滤器中才操作ijkplayer

消息循环子线程

使用QThread启动message_loop消息循环线程

方便利用QT的信号和槽函数机制,qt_ui及时响应后端发给前端的消息

设置消息分发过滤器,处理前端发给后端的消息

设计

在这里插入图片描述

流程

message_loop是QThread启动的具体run函数,里面主要是一个while循环,调用ijkmp的消息分发过滤器获取消息,然后根据返回的消息做响应

而ijkmp的消息分发过滤器会先检测这个消息

  • 如果是前端发向后端的消息,就直接调用ffplay类控制播放,继续取下一个消息;
  • 如果是后端发向前端的消息,就直接返回给message_loop循环线程,让message_loop利用信号和槽函数,控制qt界面的响应

亮点

  • 采用消息分发过滤器模块,只开辟一个线程,同步处理2个端的业务

消息队列

概念

  • 消息队列是连接qt界面和ijk播放器核心之间的桥梁

  • 作用就是传输指令

  • 本质就是结构体单链表队列

消息节点设计
  • 数据域:设计为三个int值,1个任意类型值+任意类型值的释放函数指针

  • 指针域:next指针指向下一个节点

两个队列
  • 工作消息队列:正常请求消息节点,增删

  • 回收消息队列:空消息节点,循环使用

亮点

  • 使用回收消息队列

    使用回收消息队列可以有效提高程序效率插入消息节点时先从回收消息队列中直接取空节点赋值新消息,如果没有再创建新节点赋值新消息取节点后,把消息节点清空,插入到回收消息队列中
    

功能实现

播放暂停停止

  • 前端qt界面发送相应消息

  • 在消息循环中,检测到消息,调用ffplay相关接口,改变ffplay类中的控制变量,进而改变线程状态(线程内循环会检测这些变量)

  • 播放暂停是设置了一个暂停标志位,暂停1,播放0

    在播放线程会去检测暂停标志位,如果暂停线程就休眠100ms,然后continue跳过本次循环
    
  • 停止是设置了一个退出标志位,停止1,未停止0

    各个线程都会检测退出标志位,如果退出,break退出循环
    

快进、快退、进度条seek

1.前端发送seek消息,并携带对应seek后的位置-时间戳
2.消息循环检测到后,调用ffplay类相关接口,改变ffplay类中的控制变量seek_req--标记位seek_pos--seek时间戳
3.在解复用线程中检测seek_req,调用ffmpeg的API seek到对应位置,并且刷新包队列和帧队列,给新的包的serial++avformat_seek_fileserial--标记位,区分不同seek段,播放的时候会检测
4.在解码线程中中检测seek_req,向解码器加入冲刷包,冲刷解码器--因为解码器解码会缓存一些帧(IP帧)

音视频同步

音视频同步这块有3种方式,视频同步音频,音频同步视频,加入外部时钟,音视频一块同步外部时钟因为研究发现用户对于音频更加敏感,所以一般都是让视频去同步音频
我这个项目中采用的就是视频去同步音频基本思路就是视频帧播放快于音频帧播放:睡一会,持续渲染最后一帧视频帧播放慢于音频帧播放:丢帧处理然后还要一个点就是音视频同步流畅的范围是音频时间戳-视频时间戳在-100ms到25ms内,这是一个国际标准,可以拿这个区间作为检测的阈值范围具体做法在视频播放时,检测当前视频帧播放时间戳pts和当前音频帧时间戳的差值diff(diff=音频pts-视频pts)如果差值diff在-100ms到25ms内,就说明已经同步如果差值diff超过25ms,说明音频快于视频,视频慢了,视频丢帧不渲染如果差值diff小于-100ms,说明音频慢于视频,视频快了,持续渲染最后一帧,然后视频线程休眠差值diff的绝对值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/149206.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

制作电子期刊没模板?请疯狂看我

你们是不是也在为制作电子期刊而烦恼&#xff1f;没有合适的模板&#xff0c;内容再精彩也难以展现。今天给大家分享一个超级实用的秘籍&#xff01;✨ 首先&#xff0c;我们要明白&#xff0c;电子期刊制作的关键在于模板的选择。一个好的模板可以让你的内容瞬间焕发光彩。但是…

分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测

分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测 目录 分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结…

OOTD | 美式复古穿搭耳机,复古轻便的头戴式耳机推荐

复古耳机更能带来年代感的复古数码产品&#xff0c;头戴式耳机就好似是时光滤镜的时髦配饰&#xff0c;不说功能实用性&#xff0c;在造型上添加就很酷。 随着时代的发展&#xff0c;时尚有了新的定义。对如今的消费者来说&#xff0c;时尚不仅是美学与个性的展现&#xff0c;…

C10K问题:高并发模型设计

一、循环服务器模型 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> #include <unistd.h> #include <signal.h> #include <sys/types.h> #include <sys/socket.h> //*******// #include &l…

头戴式耳机怎么戴好看?头戴式耳机正确代法

走在大街上总能看到那么一些人&#xff0c;他们眼神时而朦胧涣散&#xff0c;时而精神奕奕&#xff0c;全身上下始终散发着#请勿打扰#的气息&#xff0c;因为他们都戴着头&#xff01;戴&#xff01;式&#xff01;耳&#xff01;机&#xff01;但是头戴式耳机把头压得扁扁的&a…

《C和指针》笔记31:多维数组的数组名、指向多维数组的指针、作为函数参数的多维数组

文章目录 1. 指向多维数组的数组名2. 指向多维数组的指针3. 作为函数参数的多维数组 1. 指向多维数组的数组名 我们知道一维数组名的值是一个指针常量&#xff0c;它的类型是“指向元素类型的指针”&#xff0c;它指向数组的第1个元素。那么多维数组的数组名代表什么呢&#x…

[管理与领导-113]:IT人看清职场中的隐性规则 - 10 - 看清人的行动、行为、手段、方法背后的动机与背景条件

目录 前言&#xff1a; 一、冰山模型 1.1 冰山模型&#xff0c;系统思考的工具 1.2 冰山模型&#xff1a;发现人行为背后的动机 二、动机、行为模型 "说一套"&#xff1a; "做一套"&#xff1a; "演一套"&#xff1a; "学一套&quo…

【已解决】 Expected linebreaks to be ‘LF‘ but found ‘CRLF‘.

问题描述 团队都是用mac&#xff0c;只有我自己是windows&#xff0c;启动项目一直报错 Expected linebreaks to be ‘LF‘ but found ‘CRLF‘. 但我不能因为自己的问题去改团队配置&#xff0c;也尝试过该vscode配置默认是LF还是报错 思路 看文章vscode如何替换所有文件的…

深入剖析红黑树:优雅地平衡二叉搜索树

目录 一.红黑树的概念二.插入操作三.与AVL树的比较 一.红黑树的概念 在之前的学习中&#xff0c;我们了解了二叉搜索平衡树&#xff0c;AVL树通过控制每个结点中的平衡因子的绝对值不超过1&#xff0c;实现了一个高性能的树。而相较于AVL的高度平衡&#xff0c;红黑树觉得AVL为…

传输层协议—UDP协议

传输层协议—UDP协议 文章目录 传输层协议—UDP协议传输层再谈端口号端口号范围划分pidofnetstat UDP协议端格式UDP报文UDP特点UDP缓冲区基于UDP的应用层协议 传输层 在学习HTTP/HTTPS等应用层协议时&#xff0c;为了方便理解&#xff0c;可以简单认为HTTP将请求和响应直接发送…

JMeter性能分析实战一:日常登录接口

负载测试 日常需求&#xff1a;负载测试&#xff01; 对于桥的负载测试&#xff1a;我给你20t的一排车辆&#xff0c;看你能不能撑得住20t&#xff01; 对于系统的负载测试&#xff1a; 逐步增加负载&#xff0c;便于问题的发现和定位&#xff0c;不要操之过急。逐步增加负载…

Stable Diffusion云服务器部署完整版教程

Stable Diffusion云服务器部署完整版教程 2023年07月04日 22:30 3607浏览 18喜欢 22评论 <span class"bili-avatar-icon bili-avatar-right-icon "></span> </div>薯片_AI 粉丝&#xff1a; 1513 文章&#xff1a; 1 设置分组取消关注 已关注 …

【MySql】3- 实践篇(一)

文章目录 1. 普通索引和唯一索引的选择1.1 查询过程1.2 更新过程1.2.1 change buffer1.2.2 change buffer 的使用场景 1.3 索引选择和实践1.4 change buffer 和 redo log2. MySQL为何有时会选错索引?2.1 优化器的逻辑2.1.1 扫描行数是怎么判断的?2.1.2 重新统计索引信息 2.2 …

C语言中柔性数组的讲解与柔性数组的优势

前言:也许你从来没有听说过柔性数组&#xff08;flexible array&#xff09;这个概念&#xff0c;但是它确实是存在的。C99 中&#xff0c;结构中的最后一个元素允许是未知大小的数组&#xff0c;这就叫做"柔性数组"成员。 目录标题 柔性数组什么是柔性数组呢&#…

【C语言】八大排序算法

文章目录 一、冒泡排序1、定义2、思想及图解3、代码 二、快速排序1、hoare版本2、挖坑法3、前后指针法4、非递归快排5、快速排序优化1&#xff09;三数取中选key值2&#xff09;小区间优化 三、直接插入排序1、定义2、代码 四、希尔排序1、定义2、图解3、代码 五、选择排序1、排…

sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第二周测验

课程2_第2周_测验题 目录&#xff1a;目录 第一题 1.当输入从第8个mini-batch的第7个的例子的时候&#xff0c;你会用哪种符号表示第3层的激活&#xff1f; A. 【  】 a [ 3 ] { 8 } ( 7 ) a^{[3]\{8\}(7)} a[3]{8}(7) B. 【  】 a [ 8 ] { 7 } ( 3 ) a^{[8]\{7\}(3)} a…

代码随想录 Day11 二叉树 LeetCode T144,145,94 前中后序遍历 (递归解法)

题解及更详细解答来自于:代码随想录 (programmercarl.com) 前言: 递归三要素 确定递归函数的参数和返回值&#xff1a; 确定哪些参数是递归的过程中需要处理的&#xff0c;那么就在递归函数里加上这个参数&#xff0c; 并且还要明确每次递归的返回值是什么进而确定递归函数的返…

【Redis】基础数据结构-skiplist跳跃表

有序集合Sorted Set zadd zadd用于向集合中添加元素并且可以设置分值&#xff0c;比如添加三门编程语言&#xff0c;分值分别为1、2、3&#xff1a; 127.0.0.1:6379> zadd language 1 java (integer) 1 127.0.0.1:6379> zadd language 2 c (integer) 1 127.0.0.1:6379…

【Java-LangChain:使用 ChatGPT API 搭建系统-2】语言模型,提问范式与 Token

第二章 语言模型&#xff0c;提问范式与 Token 在本章中&#xff0c;我们将和您分享大型语言模型&#xff08;LLM&#xff09;的工作原理、训练方式以及分词器&#xff08;tokenizer&#xff09;等细节对 LLM 输出的影响。我们还将介绍 LLM 的提问范式&#xff08;chat format…

【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…