OpenCV 15(SIFT/SURF算法)

一、SIFT

Harris和Shi-Tomasi角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗口,就检测不到角点了

尺度不变特征转换即SIFT (Scale-invariant feature transform)。它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等领域。

Lowe将SIFT算法分解为如下四步

(1)建立高斯查分金字塔:搜索所有尺度上的图像位置。通过高斯差分函数来识别潜在的对于尺度和旋转不变的关键点。

在不同的尺度空间是不能使用相同的窗口检测极值点,对小的关键点使用小的窗口,对大的关键点使用大的窗口,为了达到上述目的,我们使用尺度空间滤波器

高斯核是唯一可以产生多尺度空间的核函数。-《Scale-space theory: A basic tool for analysing structures at different scales》。  近处清晰,远处模糊

一个图像的尺度空间L(x,y,σ),定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ)卷积运算 ,即:

σ是尺度空间因子,它决定了图像的模糊的程度。大尺度下(σ值大)表现的是图像的概貌信息,在小尺度下(σ值小)表现的是图像的细节信息

 

下面我们构建图像的高斯金字塔,它采用高斯函数对图像进行模糊以及降采样处理得到的,整个流程如下图所示:

  • 高斯金字塔构建过程中,首先将图像扩大一倍,在扩大的图像的基础之上构建高斯金字塔,然后对该尺寸下图像进行高斯模糊,几幅模糊之后的图像集合构成了一个Octave;
  • 对该Octave下的最模糊的一幅图像进行下采样的过程,长和宽分别缩短一倍,图像面积变为原来四分之一。这幅图像就是下一个Octave的初始图像,在初始图像的基础上完成属于这个Octave的高斯模糊处理;
  • 以此类推完成整个算法所需要的所有Octave构建,这样这个高斯金字塔就构建出来了 

利用LoG(高斯拉普拉斯方法),即图像的二阶导数,可以在不同的尺度下检测图像的关键点信息,从而确定图像的特征点。但LoG的计算量大,效率低。所以我们通过两个相邻高斯尺度空间的图像的相减,得到DoG(高斯差分)来近似LoG。

为了计算DoG我们构建高斯差分金字塔,该金字塔是在上述的高斯金字塔的基础上构建而成的,建立过程是:在高斯金字塔中每个Octave中相邻两层相减就构成了高斯差分金字塔。如下图所示:

高斯差分金字塔的第1组第1层是由高斯金字塔的第1组第2层减第1组第1层得到的。以此类推,逐组逐层生成每一个差分图像,所有差分图像构成差分金字塔。概括为DOG金字塔的第o组第l层图像是有高斯金字塔的第o组第l+1层减第o组第l层得到的。后续Sift特征点的提取都是在DOG金字塔上进行的。
 

总结:

先用高斯核进行卷积,得到高斯金字塔 --》 差分卷积核

(2)极值点精确定位

 在 DoG 搞定之后,就可以在不同的尺度空间中搜索局部最大值了。对于图像中的一个像素点而言,它需要与自己周围的 8 邻域,以及尺度空间中上下两层中的相邻的 18(2x9)个点相比。如果是局部最大值(26个点),它就可能是一个关键点。基本上来说关键点是图像在相应尺度空间中的最好代表。如下图所示:

在离散空间中寻找到的极值点并不一定是真正的极值点我们用离散值插值的方式,将离散空间转换为连续空间,得到更加准确的极值点。同时去除低对比度的关键点和不稳定的边缘响应点。

(3)关键点方向确定 

经过上述两个步骤,图像的关键点就完全找到了,这些关键点具有尺度不变性。为了实现旋转不变性,还需要为每个关键点分配一个方向角度,也就是根据检测到的关键点所在高斯尺度图像的邻域结构中求得一个方向基准。 

对于任一关键点,我们采集其所在高斯金字塔图像以r为半径的区域内所有像素的梯度特征(幅值和幅角),半径r为:

其中σ是关键点所在octave的图像的尺度,可以得到对应的尺度图像。

梯度的幅值和方向的计算公式为:

关键点的方向,并不是关键点的梯度方向,而是统计关键点邻域内所有点的梯度方向,将0-360度分为8个方向,每45度一个方向。形成的8个方向形成方向柱状图。

峰值代表关键点方向,大于峰值80%的作为辅方向。 

辅方向对特征点匹配的稳定性非常重要

(4)关键点描述

为了保证特征点的旋转不变性,以特征点为中心,将坐标轴旋转为关键点的主方向,如下图所示:

取特征点周围8*8的像素进行梯度方向统计和高斯加权(蓝色圆圈代表高斯加权范围)。每4*4窗口生成8个方向,这样就生成了2*2*8的向量作为特征点的数学描述。

SIFT算法采用4*4*8共128维向量作为特征点的描述子。最后通过描述子的欧式距离进行特征点匹配。

SIFT在图像的不变特征提取方面拥有无与伦比的优势,但并不完美,仍然存在实时性不高,有时特征点较少,对边缘光滑的目标无法准确提取特征点等缺陷,自SIFT算法问世以来,人们就一直对其进行优化和改进,其中最著名的就是SURF算法。

sift = cv.xfeatures2d.SIFT_create()    实例化sift
kp,des = sift.detectAndCompute(gray,None)   检测关键点并计算

参数:

  • gray: 进行关键点检测的图像,注意是灰度图像

返回:

  • kp: 关键点信息,包括位置,尺度,方向信息
  • des: 关键点描述符,每个关键点对应128个梯度信息的特征向量

将关键点检测结果绘制在图像上 

cv.drawKeypoints(image, keypoints, outputimage, color, flags)
  • image: 原始图像
  • keypoints:关键点信息,将其绘制在图像上
  • outputimage:输出图片,可以是原始图像
  • color:颜色设置,通过修改(b,g,r)的值,更改画笔的颜色,b=蓝色,g=绿色,r=红色。
  • flags:绘图功能的标识设置
    1. cv2.DRAW_MATCHES_FLAGS_DEFAULT:创建输出图像矩阵,使用现存的输出图像绘制匹配对和特征点,对每一个关键点只绘制中间点
    2. cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:不创建输出图像矩阵,而是在输出图像上绘制匹配对
    3. cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:对每一个特征点绘制带大小和方向的关键点图形
    4. cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS:单点的特征点不被绘制

import cv2 as cv 
import numpy as np
import matplotlib.pyplot as plt
# 1 读取图像
img = cv.imread('./image/tv.jpg')
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 2 sift关键点检测
# 2.1 实例化sift对象
sift = cv.xfeatures2d.SIFT_create()# 2.2 关键点检测:kp关键点信息包括方向,尺度,位置信息,des是关键点的描述符
kp,des=sift.detectAndCompute(gray,None)
# 2.3 在图像上绘制关键点的检测结果
cv.drawKeypoints(img,kp,img,flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# 3 图像显示
plt.figure(figsize=(8,6),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('sift检测')
plt.xticks([]), plt.yticks([])
plt.show()

二、SURF

使用 SIFT 算法进行关键点检测和描述的执行速度比较慢, 需要速度更快的算法。 2006 年 Bay提出了 SURF 算法,是SIFT算法的增强版,它的计算量小,运算速度快,提取的特征与SIFT几乎相同,将其与SIFT算法对比如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/148887.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

力扣 -- 96. 不同的二叉搜索树

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int numTrees(int n) {vector<int> dp(n1);//初始化dp[0]1;//填表for(int i1;i<n;i){for(int j1;j<i;j){//状态转移方程dp[i](dp[j-1]*dp[i-j]);}}//返回值return dp[n];} }; 你学会了吗&…

【C语言】循环结构程序设计 (详细讲解)

前言&#xff1a;前面介绍了程序中常常用到的顺序结构和选择结构&#xff0c;但是只有这两种结构是不够的&#xff0c;还有用到循环结构(或者称为重复结构)。因为在日常生活中或是在程序所处理的问题中常常遇到需要重复处理的问题。 【卫卫卫的代码仓库】 【选择结构】 【专栏链…

GEO生信数据挖掘(三)芯片探针ID与基因名映射处理

检索到目标数据集后&#xff0c;开始数据挖掘&#xff0c;本文以阿尔兹海默症数据集GSE1297为例 目录 处理一个探针对应多个基因 1.删除该行 2.保留分割符号前面的第一个基因 处理多个探针对应一个基因 详细代码案例一删除法 详细代码案例二 多个基因名时保留第一个基因名…

vs code 离线安装 CodeLLDB 包[Acquiring CodeLLDB platform package]

1. 问题描述 最近在配置使用vscode编译c&#xff0c;一打开vscode就弹出以下信息“Acquiring CodeLLDB platform package” 2. 问题原因 vscode在安装CodeLLDB插件时&#xff0c;速度太慢&#xff0c;一直不能成功 3. 解决方案&#xff1a; 离线下载 CodeLLDB插件&#xff0c…

一文读懂UTF-8的编码规则

之前写过一篇文章“一文彻底搞懂计算机中文编码”里面只是介绍了GB2312编码知识&#xff0c;关于utf8没有涉及到&#xff0c;经过查询资料发现utf8是对unicode的一种可变长度字符编码&#xff0c;所以再记录一下。 现在国家对于信息技术中文编码字符集制定的标准是《GB 18030-…

开源python双屏图片浏览器软件

源代码 需要安装pyqt5这个库 # -*- coding: utf-8 -*-from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QVBoxLayout, QPushButton, QFileDialog, QAction, QSlider, QHBoxLayout, QWidget from PyQt5.QtGui import QPixmap from PyQt5.QtCore import Qt, QS…

新手学习笔记-----⽂件操作

目录 1. 为什么使⽤⽂件&#xff1f; 2. 什么是⽂件&#xff1f; 2.1 程序⽂件 2.2 数据⽂件 2.3 ⽂件名 3. ⼆进制⽂件和⽂本⽂件&#xff1f; 4. ⽂件的打开和关闭 4.1 流和标准流 4.1.1 流 4.1.2 标准流 4.2 ⽂件指针 4.3 ⽂件的打开和关闭 5. ⽂件的顺序读写 …

YOLOv5、YOLOv8改进:RepVGG结构

1.简介 论文参考&#xff1a;最新RepVGG结构: Paper 我们所说的“VGG式”指的是&#xff1a; 没有任何分支结构。即通常所说的plain或feed-forward架构。 仅使用3x3卷积。 仅使用ReLU作为激活函数。 主要创新点为结构重参数化。在训练时&#xff0c;网络的结构是多分支进…

认知智能最新研究成果

声明&#xff1a;以下内容仅代表个人对现象和本质探索&#xff0c;不代表对学术成果评价。曾有幸和马文明斯基的学生段老师和方老师一起讨论过人工智能问题。随着自己对问题进一步理解&#xff0c;刚好18年左右开始接触认知智能理论核心认知计算部分。 第一&#xff1a;算法是一…

[Spring] Spring5——AOP 简介

目录 一、AOP 简介 1、什么是 AOP 二、AOP 底层原理 1、动态代理原理 2、基于接口的 JDK 动态代理 3、基于继承的 CGLib 动态代理 三、底层原理实现—— JDK 动态代理 1、使用 Proxy 类的方法创建代理对象 2、JDK 动态代理示例 四、AOP 操作术语 1、连接点 2、切入…

获取医疗器械板块的个股列表

获取医疗器械板块的个股列表&#xff0c;用python爬虫做到&#xff08;数据网址&#xff1a;板块 - 医疗器械概念 - 股票行情中心 - 搜狐证券&#xff09; import requests from bs4 import BeautifulSoup # 获取医疗器械概念个股列表url "https://q.stock.sohu.com/cn/…

vivado杂项记录

文章目录 问题的解决Xilinx Vitis 启动时未响应的解决方法Spawn failed&#xff1a;No error错误vivado卡在Initializing Language Server的解决方法vivado中添加文件后出现non-module 其他关于MAX_FANOUT属性vviado 2018.3中IP的core container 问题的解决 Xilinx Vitis 启动…

一文拿捏Spring事务之、ACID、隔离级别、失效场景

1.&#x1f31f;Spring事务 1.编程式事务 事务管理代码嵌入嵌入到业务代码中&#xff0c;来控制事务的提交和回滚&#xff0c;例如TransactionManager 2.声明式事务 使用aop对方法前后进行拦截&#xff0c;然后在目标方法开始之前创建或者加入一个事务&#xff0c;执行完目…

python机器学习基础教程02-鸢尾花分类

初识数据 from sklearn.datasets import load_irisif __name__ __main__:iris_dataset load_iris()print("数据集的键为:\n{}".format(iris_dataset.keys()))# DESCR 数据集的简要说明print(iris_dataset[DESCR][:193])# target_names 数组对应的是我们要预测的花…

CCF CSP认证 历年题目自练Day21

题目一 试题编号&#xff1a; 201909-1 试题名称&#xff1a; 小明种苹果 时间限制&#xff1a; 2.0s 内存限制&#xff1a; 512.0MB 题目分析&#xff08;个人理解&#xff09; 先看输入&#xff0c;第一行输入苹果的棵树n和每一次掉的苹果数m还是先如何存的问题&#xf…

VD6283TX环境光传感器驱动开发(4)----移植闪烁频率代码

VD6283TX环境光传感器驱动开发----4.移植闪烁频率代码 闪烁定义视频教学样品申请源码下载开发板设置开发板选择IIC配置串口配置开启X-CUBE-ALS软件包时钟树配置ADC使用定时器触发采样KEIL配置FFT代码配置app_x-cube-als.c需要添加函数 闪烁定义 光学闪烁被定义为人造光源的脉动…

基于j2ee的交通管理信息系统/交通管理系统

摘 要 随着当今社会的发展&#xff0c;时代的进步&#xff0c;各行各业也在发生着变化&#xff0c;比如交通管理这一方面&#xff0c;利用网络已经逐步进入人们的生活。传统的交通管理&#xff0c;都是工作人员线下手工统计&#xff0c;这种传统方式局限性比较大且花费较多。计…

雷达编程实战之提高探测速度

有效帧频率作为雷达一个非常核心的指标&#xff0c;它代表了雷达探测识别的速度&#xff0c;速度越快&#xff0c;后级各项智能驾驶功能就能得到更快、更有效的判断。本篇文章首先从硬件的角度&#xff0c;提供了一种合理利用片上资源提高探测识别速度的常用方法&#xff0c;然…

Python无废话-办公自动化Excel图表制作

openpyxl 支持用Excel工作表中单元格的数据&#xff0c;创建条形图、折线图、散点图和饼图等。 图表制作步骤 在openpyxl模块中创建图表&#xff0c;步骤如下: ①选择一个单元格区域&#xff0c;创建Reference 对象&#xff0c;作为图形数据a)(Value)。 ②创建一个Chart对象…

web漏洞-PHP反序列化

目录 PHP反序列化序列化反序列化原理涉及技术利用危害CTF靶场 PHP反序列化 序列化 将对象转换成字符串 反序列化 相反&#xff0c;将字符串转换成对象。 数据格式的转换对象的序列化有利于对象的保存和传输&#xff0c;也可以让多个文件共享对象。 原理 未对用户输入的序列化字…