【做题笔记】多项式/FFT/NTT

HDU1402 - A * B Problem Plus

题目链接

大数乘法是多项式的基础应用,其原理是将多项式 f ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + ⋯ + a n x n f(x)=a_0+a_1x+a_2x^2+a_3x^3+\cdots+a_nx^n f(x)=a0+a1x+a2x2+a3x3++anxn中的 x = 10 x=10 x=10,然后让大数的每一位当做对应的 1 0 y 10^y 10y的系数,然后进行多项式乘法运算,以降低大数乘法的时间复杂度(高精度乘法时间复杂度是 O ( n 2 ) O(n^2) O(n2)的,多项式乘法是 O ( n log ⁡ n ) O(n\log n) O(nlogn) n n n是位数)。

在进行多项式乘法之后,我们得到了新的多项式 h ( x ) = c 0 + c 1 × 10 + c 2 × 1 0 2 + ⋯ + c m × 1 0 m h(x)=c_0+c_1\times 10+c_2\times 10^2+\cdots + c_m\times 10^m h(x)=c0+c1×10+c2×102++cm×10m
这里的 c 0 , c 1 , ⋯ , c m c_0,c_1,\cdots,c_m c0,c1,,cm由于在乘法时会发生进位,所以每一位可能会大于 9 9 9,此时要将后面的位的值挪到下一位上去,让这一位保证在 9 9 9以内。

然后从高位到低位找到第一个不是 0 0 0的位,然后逐位输出即可。

如果最终结果是 0 0 0,要特别判断。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = (1ll << 47) * 7 * 4451 + 1;
const LL g = 3;LL mul(LL x, LL y) {return (x * y - (LL)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}template<class T> T power(T a, LL b) {T res = 1;for (; b; b >>= 1) {if (b & 1) res = mul(res, a);a = mul(a, a);}return res;
}LL rev[4000005];void change(LL *y, int len) {for (int i = 0; i < len; ++i) {if (i < rev[i]) swap(y[i], y[rev[i]]);}
}void DFT(LL *y, int len, int on) {change(y, len);for (LL h = 2; h <= len; h <<= 1) {LL wn = power(g, (mod - 1) / h);if (on == -1) wn = power(wn, mod - 2); for (int j = 0; j < len; j += h) {LL w = 1ll;for (int k = j; k < j + h / 2; ++k) {LL u = y[k] % mod;LL t = mul(w, y[k + h / 2]);y[k] = (u + t) % mod;y[k + h / 2] = (u - t + mod) % mod;w = mul(w, wn);}}}
}void NTT(LL *x1, LL *x2, LL len) {for (int i = 0; i < len; ++i) {rev[i] = rev[i >> 1] >> 1;if (i & 1) rev[i] |= len >> 1;}DFT(x1, len, 1);DFT(x2, len, 1);for (int i = 0; i < len; ++i) {x1[i] = mul(x1[i], x2[i]);}DFT(x1, len, -1);LL inv = power(len, mod - 2);for (int i = 0; i < len; ++i) {x1[i] = mul(x1[i], inv);}
}string a, b;
LL x1[2000005], x2[2000005];void main2() {cin >> b;int n = a.length(), m = b.length();int len = 1;while (len <= (n + m) * 2 + 1) len <<= 1;int pt = n - 1;for (char c: a) {x1[pt--] = c - '0';}for (int i = n; i < len + 300; ++i) {x1[i] = 0;}pt = m - 1;for (char c: b) {x2[pt--] = c - '0';}for (int i = m; i < len; ++i) {x2[i] = 0;}NTT(x1, x2, len);for (int i = 0; i < len; ++i) {if (x1[i] > 9) {x1[i + 1] += (x1[i] / 10);x1[i] %= 10;}}pt = len;while (x1[pt] > 0) {if (x1[pt] > 9) {x1[pt + 1] += (x1[pt] / 10);x1[pt++] %= 10;}}while (pt >= 0 and x1[pt] == 0) --pt;if (pt == -1) {cout << 0 << '\n';return;}for (int i = pt; i >= 0; --i) {cout << x1[i];}cout << '\n';
}int main() {ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);LL _ = 1;
//	cin >> _;while (cin >> a) main2();return 0;
}

HDU4609 - 3-idiots

题目链接

要求能够成三角形的概率,我们可以通过可以构成三角形的情况总数/总的情况数来得到。其中总的情况数就是 ( n 3 ) \binom{n}{3} (3n),重点是求解可以构成三角形的情况。

首先我们可以维护一个多项式, x i x_i xi的系数表示长度为 i i i的线段有多少条。那么以样例 1 1 1为例,得到的多项式的系数就是: [ 0 , 1 , 0 , 2 , 1 ] [0,1,0,2,1] [0,1,0,2,1]

接下来,我们将这个多项式自己与自己相乘,也就是 [ 0 , 1 , 0 , 2 , 1 ] × [ 0 , 1 , 0 , 2 , 1 ] [0,1,0,2,1]\times [0,1,0,2,1] [0,1,0,2,1]×[0,1,0,2,1],得到的多项式的系数是: [ 0 , 0 , 1 , 0 , 4 , 2 , 4 , 4 , 1 ] [0,0,1,0,4,2,4,4,1] [0,0,1,0,4,2,4,4,1]

这个多项式表示的含义是从第一个 [ 0 , 1 , 0 , 2 , 1 ] [0,1,0,2,1] [0,1,0,2,1]取出一个边,从第二个 [ 0 , 1 , 0 , 2 , 1 ] [0,1,0,2,1] [0,1,0,2,1]取出一个边:
取出两个边的长度和为 0 0 0的有 0 0 0种;
取出两个边的长度和为 1 1 1的有 0 0 0种;
取出两个边的长度和为 2 2 2的有 1 1 1种;
取出两个边的长度和为 3 3 3的有 0 0 0种;
取出两个边的长度和为 4 4 4的有 4 4 4种;
取出两个边的长度和为 5 5 5的有 2 2 2种;
取出两个边的长度和为 6 6 6的有 4 4 4种;
取出两个边的长度和为 7 7 7的有 4 4 4种;
取出两个边的长度和为 8 8 8的有 1 1 1种。

我们现在要利用得到的这个信息来求解答案。

我们先来看一看我们的三条边形成三角形,有怎样的条件:设三角形三条边是 a , b , c a,b,c a,b,c,且 a < b < c a<b<c a<b<c。于是有 a + b > c a+b>c a+b>c

首先,在我们得到的 [ 0 , 0 , 1 , 0 , 4 , 2 , 4 , 4 , 1 ] [0,0,1,0,4,2,4,4,1] [0,0,1,0,4,2,4,4,1]中,存在同一条边被采用两次的情况,首先我们要遍历每一条边,将长度之和为其二倍的情况 − 1 -1 1。原始的 4 4 4条边的边长分别是 [ 1 , 3 , 3 , 4 ] [1,3,3,4] [1,3,3,4],所以我们要减去两条边长度为 [ 2 , 6 , 6 , 8 ] [2,6,6,8] [2,6,6,8]的一种方案。于是变成: [ 0 , 0 , 0 , 0 , 4 , 2 , 2 , 4 , 0 ] [0,0,0,0,4,2,2,4,0] [0,0,0,0,4,2,2,4,0]

然后,由于我们两边的边是一样的,左边取 a a a右面取 b b b,左边取 b b b右边取 a a a,这两种其实应当是一种方案。所以我们应当将每一个可能的两边长度的可能情况减半。于是变成 [ 0 , 0 , 0 , 0 , 2 , 1 , 1 , 2 , 0 ] [0,0,0,0,2,1,1,2,0] [0,0,0,0,2,1,1,2,0]

如果我们设最终答案为 t o t a l total total,将卷积后得到的结果求一个前缀和叫做 p r e pre pre n n n条边最长的那条边为 m x mx mx。先将所有边从小到大进行排序。

接下来依次枚举 n n n条边,对于第 i i i条边,我们设其长度为 c i c_i ci,并认定其为最长边的情况,求解这种情况时的可行方案数。首先,根据两边之和大于第三边,我们剩下两条边的长度之和应当大于 c i c_i ci,所以从刚刚卷积和处理后得到的信息中,将长度之和为 [ c i + 1 , ∞ ] [c_i+1,\infty] [ci+1,]的可能情况加到答案中。

那么这一步就是 t o t a l ← t o t a l + p r e [ 2 m x ] − p r e [ c i ] total\leftarrow total+pre[2mx]-pre[c_i] totaltotal+pre[2mx]pre[ci]

然后根据我们刚才所设,当前边我们令其为最大边,所以一切包含一个小于 c i c_i ci的边、包含一个大于 c i c_i ci的边都是不合法的,但是因为这两条边的长度和一定大于 c i c_i ci,所以被算进了 t o t a l total total里面,所以要从 t o t a l total total里面减掉。我们考虑这样的可能发生情况是 ( n − i ) × ( i − 1 ) (n-i)\times (i-1) (ni)×(i1),其中 n − i n-i ni是比 c i c_i ci长的边的数量, i − 1 i-1 i1是比 c i c_i ci短的数量和。

这一步就是 t o t a l ← t o t a l − ( n − i ) × ( i − 1 ) total\leftarrow total-(n-i)\times(i-1) totaltotal(ni)×(i1)

还有一种情况,就是两条边都取了比 c i c_i ci长的,那就是 ( n − i 2 ) \binom{n-i}{2} (2ni)种情况,因为是从比 c i c_i ci长的 n − i n-i ni个边里任意挑选两个边。

这一步就是 t o t a l ← t o t a l − ( n − i 2 ) total\leftarrow total-\binom{n-i}{2} totaltotal(2ni)

还有一种情况,就是一条边取了自身,另一条边取了其他,存在 n − 1 n-1 n1种情况。这里因为之前已经除以 2 2 2,所以不用考虑从哪里搬来的情况。

这一步就是 t o t a l ← t o t a l − ( n − 1 ) total\leftarrow total-(n-1) totaltotal(n1)

n n n条边对 t o t a l total total的贡献全部计算一遍之后,最后的结果就是所有合法的情况数了。

最后的答案就是 t o t a l ( n 3 ) \frac{total}{\binom{n}{3}} (3n)total

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 100005;
const LL mod = 998244353;
const LL g = 3, gi = 332748118;
const double PI = acos(-1.0);struct Complex {double x, y;Complex(double _x = 0.0, double _y = 0.0) {x = _x; y = _y;}Complex operator - (const Complex &b) const {return Complex(x - b.x, y - b.y);}Complex operator + (const Complex &b) const {return Complex(x + b.x, y + b.y);}Complex operator * (const Complex &b) const {return Complex(x * b.x - y * b.y, x * b.y + y * b.x);}
};LL rev[4000005];void change(Complex *y, int len) {for (int i = 0; i < len; ++i) {if (i < rev[i]) swap(y[i], y[rev[i]]);}
}void FFT(Complex *y, int len, int on) {change(y, len);for (int h = 2; h <= len; h <<= 1) {Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));for (int j = 0; j < len; j += h) {Complex w(1, 0);for (int k = j; k < j + h / 2; ++k) {Complex u = y[k];Complex t = w * y[k + h / 2];y[k] = u + t;y[k + h / 2] = u - t;w = w * wn;}}}if (on == -1) {for (int i = 0; i < len; ++i) {y[i].x = y[i].x / len + 0.5;}}
}LL n, len = 289999;
LL a[N], x[N * 3], pre[N * 2];
Complex F[N * 2];void main2() {cin >> n;LL mx = 0;memset(x, 0, sizeof(x));for (int i = 1; i <= n; ++i) {cin >> a[i];mx = max(mx, a[i]);++x[a[i]];}len = 1;while (len <= mx * 2 + 1) len <<= 1;for (int i = 0; i <= mx; ++i) {F[i].x = (double)x[i];F[i].y = 0;}for (int i = mx + 1; i < len; ++i) {F[i].x = F[i].y = 0;}for (int i = 0; i < len; ++i) {rev[i] = rev[i >> 1] >> 1;if (i & 1) rev[i] |= len >> 1;}FFT(F, len, 1);for (int i = 0; i < len; ++i) {F[i] = (F[i] * F[i]);}FFT(F, len, -1);for (int i = 0; i < len; ++i) {x[i] = (LL)F[i].x;}for (int i = 1; i <= n; ++i) {--x[a[i] * 2];}for (int i = 1; i <= mx * 2; ++i) {x[i] /= 2;}pre[0] = 0;for (int i = 1; i <= mx * 2; ++i) {pre[i] = pre[i - 1] + x[i];}LL total = 0;for (LL i = 1; i <= n; ++i) {total += (pre[mx * 2] - pre[a[i]]);total -= ((n - i) * (i - 1));total -= (n - 1);total -= ((n - i) * (n - i - 1) / 2);}LL all = n * (n - 1) * (n - 2) / 6;double ans = (double)total / (double)all;cout << fixed << setprecision(7) << ans << '\n';
}int main() {ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);LL _ = 1;cin >> _;while (_--) main2();return 0;
}

CF954I - Yet Another String Matching Problem

题目链接

首先考虑,如果 S S S串和 T T T串长度相同,该怎么做。我们发现,我们的目的是消除差异性,即对于上下每一对字母,他们最后都要变成同一个字母。

以abcd和ddcb为例,那么上下每一对依次是a-d,b-d,c-c,d-b。我们将每一个字母设为一个点,将每一对当做一个边连起来,连完之后长这个样子:

会发现几个字母会连成一个连通图:

在这里插入图片描述

我们将四个字母分为了两个部分: c c c自己是一个部分, a b d abd abd三个字母是一个部分。我们发现,连的边指在原来的两个串中对应的同一个位置的两个字母,他们最终要变成同一个字母。而每一次操作要同时改变两个串中的这个字母,所以我们不难推出,被我们连上边形成连通块的这些字母,他们最后必然要变成同一个字母。我们就让他变成他们之中的一个字母,那么我们发现,其实我们的操作数,就是我们连的边的数量,因为我们每连一次边,就相当于要进行一次题目中的操作,变换一个字母。

这样我们用并查集来实现:对于每一个位置,判断这个位置的两个字母是否相同,如果相同那就不需要我们动了;如果不同,就需要判断这两个字母现在是否在一个连通块,如果在,则不管(已经变成同样的字母了),不在同一个连通块就用并查集合并一下,然后答案 + 1 +1 +1

因为我们的字符集只有前 6 6 6个字母 a b c d e f abcdef abcdef,所以合并操作这类的都是常数级别。那么,在两个串长度相等的情况下,得到答案的时间复杂度是 O ( m ) O(m) O(m)的。

但是我们原题中 S S S串会比较长,我们需要枚举每一个长度为 ∣ T ∣ \vert T\vert T的子串,每个子串都要求一次答案,于是时间复杂度变成 O ( n m ) O(nm) O(nm)的了,直接爆炸。

我们来尝试进行一波优化,看看哪里是最消耗时间的地方。

我们注意到,我们的字符串长度的规模是 1.25 × 1 0 5 1.25\times 10^5 1.25×105,而我们的字符集大小只有 6 6 6,意味着我们同一个位置可能的字符对只有 6 × 36 6\times 36 6×36种。又由于我们不考虑上下相同的字符串,所以我们需要考虑的字符对情况只有 36 − 6 = 30 36-6=30 366=30种。对于一次子串和 T T T串的求解过程中,如果串过长,那么相同的字符对会出现很多次,而其中只有一次是有用的,在第一次的时候我们对这两个字母进行连边,从第二次开始再遇到这个字符对,根本就是毫无用处了。所以,如果我们能够判断出,每一个子串跟 T T T串匹配的过程中,所有位里是否包含这样的字符对就好了。

怎么来做?先说结论:用到卷积

先来看一个关于卷积的性质。假设我们有两个多项式:
f ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n f(x)=a0+a1x+a2x2++anxn
g ( x ) = b 0 + b 1 x + b 2 x 2 + ⋯ + b n x n g(x)=b_0+b_1x+b_2x^2+\cdots+b_nx^n g(x)=b0+b1x+b2x2++bnxn

试求 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x)
我们发现, f ( x ) ⋅ g ( x ) = a 0 b 0 + ( a 0 b 1 + a 1 b 0 ) x + ( a 0 b 2 + a 1 b 1 + a 2 b 0 ) x 2 + ( a 0 b 3 + a 1 b 2 + a 2 b 1 + a 3 b 0 ) x 3 + ⋯ f(x)\cdot g(x)=a_0b_0+(a_0b_1+a_1b_0)x+(a_0b_2+a_1b_1+a_2b_0)x^2+(a_0b_3+a_1b_2+a_2b_1+a_3b_0)x^3+\cdots f(x)g(x)=a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x2+(a0b3+a1b2+a2b1+a3b0)x3+

发现了什么?最后得到的多项式系数, x k x^k xk的系数是 ∑ i = 0 k a i b k − i \displaystyle\sum\limits_{i=0}^k a_ib_{k-i} i=0kaibki,你会发现他们由所有 i + j = k i+j=k i+j=k a i b j a_ib_j aibj相加得到,换句话说,组成 x k x^k xk的系数的所有 a i b j a_ib_j aibj,都满足他们的下标和 i + j i+j i+j是定值,且定值为 k k k

然后看看我们需要的是什么?事实上,我们可以总结出我们现阶段的问题是:从 S S S串的第 i i i位作为第一个字符的长度为 ∣ T ∣ \vert T\vert T的子串和 T T T串匹配的过程中,字符 c 1 c_1 c1和字符 c 2 c_2 c2是否出现。

在其中的一个固定了 c 1 c_1 c1 c 2 c_2 c2的子问题中,我们设一个数组 a i a_i ai,表示 S S S串的第 i i i位是否为 c 1 c_1 c1。如果 a i = 1 a_i=1 ai=1,说明是 c 1 c_1 c1;如果 a i = 0 a_i=0 ai=0,说明第 i i i不是 c 1 c_1 c1。同样的方式设一个数组 b i b_i bi,表示 T T T串第 i i i位是否为 c 2 c_2 c2

那么, T T T串的第一个字母和 S S S串第 i i i个字母对上的时候,字符对 ( c 1 , c 2 ) (c1,c2) (c1,c2)出现的条件是什么?如果 ∑ k = 0 ∣ T ∣ − 1 a i + k b k > 0 \displaystyle\sum\limits_{k=0}^{\vert T\vert - 1} a_{i+k}b_{k}>0 k=0T1ai+kbk>0,说明存在这样的字符对 ( c 1 , c 2 ) (c_1,c_2) (c1,c2)
因为这种情况下, S S S串的第 i + k i+k i+k位和 T T T串的第 k k k是对上的,只有 a i + k = b k = 1 a_{i+k}=b_k=1 ai+k=bk=1成立,我们才能说这样的字符对存在。

但是怎么求呢?我们现在有了 a i , b i a_i,b_i ai,bi,但是因为 ∑ k = 0 ∣ T ∣ − 1 a i + k b k \displaystyle\sum\limits_{k=0}^{\vert T\vert - 1} a_{i+k}b_{k} k=0T1ai+kbk a , b a,b a,b的下标加起来不是一个常值。如果是一个常值的话,我们就可以把 a i a_i ai数组和 b i b_i bi数组当做两个多项式的系数,然后我们进行多项式的乘法,这时 a i b j a_ib_j aibj自然就是我们两个多项式乘在一起之后 x i + j x^{i+j} xi+j的系数中的一部分。
我们发现,我们要求的这个求和公式的形式等同于 ∑ k = 0 ∣ T ∣ − 1 a i b j \displaystyle\sum\limits_{k=0}^{\vert T\vert - 1} a_ib_j k=0T1aibj,如果 i + j i+j i+j是定值 C C C,那么我们所求的求和公式的结果就是多项式乘在一起之后 x C x^C xC的系数。

观察我们想求的公式 ∑ k = 0 ∣ T ∣ − 1 a i + k b k \displaystyle\sum\limits_{k=0}^{\vert T\vert - 1} a_{i+k}b_{k} k=0T1ai+kbk,我们发现,如果 b k b_k bk中的 k k k变成 − k -k k,哪怕是加一点常数,就完美了。因为这样两个变量 k k k就抵消掉了,剩下的和就是一个定值,就可以通过两个多项式相乘之后的系数求得。

b k b_k bk中的 k k k变成 − k -k k很简单,我们可以直接将 T T T串翻转,这样我们原本的 b k b_k bk就变成了 b ∣ T ∣ − k − 1 b_{\vert T \vert-k-1} bTk1,我们原本要求的求和公式 ∑ k = 0 ∣ T ∣ − 1 a i + k b k \displaystyle\sum\limits_{k=0}^{\vert T\vert - 1} a_{i+k}b_{k} k=0T1ai+kbk也变成了 ∑ k = 0 ∣ T ∣ − 1 a i + k b ∣ T ∣ − k − 1 \displaystyle\sum\limits_{k=0}^{\vert T\vert - 1} a_{i+k}b_{\vert T\vert-k-1} k=0T1ai+kbTk1

这个时候我们 a , b a,b a,b的下标之和就是 ∣ T ∣ + i − 1 \vert T\vert+i-1 T+i1。这里面 ∣ T ∣ \vert T\vert T T T T的长度,是定值; i i i是当前子问题中 T T T串第一个字符跟 S S S串的哪个字符对齐,在子问题中也是一个定值。于是 ∣ T ∣ \vert T\vert T就是一个定值。这样的话,我们就可以利用我们刚刚推出的结论来求解这个求和式了。将两个数组 a , b a,b a,b当做多项式系数后,进行多项式乘法,得到的结果多项式中, x ∣ T ∣ + i − 1 x^{\vert T\vert+i-1} xT+i1的系数,就是我们所求的结果。如果这个结果大于 0 0 0,则说明存在这样的字符对 ( c 1 , c 2 ) (c_1,c_2) (c1,c2)

f [ i ] [ c 1 ] [ c 2 ] f[i][c_1][c_2] f[i][c1][c2]为在 T T T串第一个字符跟 S S S串的哪个字符对齐时是否存在字符对 ( c 1 , c 2 ) (c_1,c_2) (c1,c2)。如果存在,其值为 1 1 1,否则为 0 0 0

所以整体的流程就是:

  1. 对于字符 c 1 c_1 c1,我们先看 S S S串中哪些位置是 c 1 c_1 c1。设数组 a a a来表示这个信息。如果 a i = 1 a_i=1 ai=1,说明字符串 S S S的第 i i i位是 c 1 c_1 c1;如果 a i = 0 a_i=0 ai=0,说明字符串的第 i i i位不是 c 1 c_1 c1
  2. 翻转字符串 T T T
  3. 对于字符 c 2 c_2 c2,我们先看 T T T串中哪些位置是 c 2 c_2 c2。设数组 b b b来表示这个信息。如果 b i = 1 b_i=1 bi=1,说明字符串 T T T的第 i i i位是 c 2 c_2 c2;如果 b i = 0 b_i=0 bi=0,说明字符串的第 i i i位不是 c 2 c_2 c2
  4. 把得到的 a , b a,b a,b数组当做两个多项式的系数,进行卷积。
  5. 得到的结果多项式的系数中,如果 0 ≤ ∣ T ∣ + i − 1 < n 0\leq \vert T\vert + i -1 < n 0T+i1<n,那么只要 x ∣ T ∣ + i − 1 x^{\vert T\vert +i-1} xT+i1的系数大于 0 0 0,则可以认为 f [ i ] [ c 1 ] [ c 2 ] = 1 f[i][c_1][c_2]=1 f[i][c1][c2]=1。如果这一项的系数为 0 0 0,则 f [ i ] [ c 1 ] [ c 2 ] = 0 f[i][c_1][c_2]=0 f[i][c1][c2]=0

这样的话,对于每一对 c 1 , c 2 c_1,c_2 c1,c2,我们都这样操作一遍,就可以得到全部的 f f f数组的信息了,即:我们求得了从 S S S串的第 i i i位作为第一个字符的长度为 ∣ T ∣ \vert T\vert T的子串和 T T T串匹配的过程中,字符 c 1 c_1 c1和字符 c 2 c_2 c2是否出现。接下来用这个信息,对于每一个 i i i的位置,看看所有点对的情况,然后用上面说到的方法用并查集合并一下,就得到了每一个位置的答案。

试试分析现在的时间复杂度。多项式乘法采用FFT或者NTT的话,一次DFT/IDFT的时间复杂度是 O ( n log ⁡ n ) O(n\log n) O(nlogn)。我们一共进行了 30 30 30个两个字母不同的字符对的查询,每一次查询进行了 3 3 3次DFT/IDFT,也就是说光是在多项式乘法上,时间复杂度就是 O ( 30 × 3 n log ⁡ n ) O(30\times 3 n\log n) O(30×3nlogn)。经过计算发现这个时间复杂度略微有点大。主要原因是 30 × 3 30\times 3 30×3这个常数太大了。

每一个点对都要进行 3 3 3次DFT,这三次 D F T DFT DFT分别做了:

  1. S S S串的 a a a数组进行DFT
  2. 将翻转后的 T T T串的 b b b数组进行DFT
  3. 将得到的结果进行IDFT。

但是,由于我们的字符集是有限大小的,我们每一个字母作为字符对的第一个字母时,都要求一次 a a a数组,进行一次DFT,这是重复操作。 b b b数组也是同理。所以我们可以预处理出 S S S串所有字符的 a a a数组的DFT后的结果,预处理出翻转后 T T T串所有字符的 b b b数组的DFT后的结果。后续求的时候,直接将预处理出的两个数组相乘,然后进行一次IDFT即可。这样,我们进行DFT/IDFT的次数是两个串的 a , b a,b a,b数组DFT预处理 6 + 6 = 12 6+6=12 6+6=12次, 30 30 30个字符对的IDFT 30 30 30次,一共只有 42 42 42次。时间复杂度一下子就砍了一半。

最后求解的时候每一个位置遍历所有字符对 36 36 36个,每一个字符对的操作是常数级(因为字符集很小),所以这个做法整体的时间复杂度可以认为是 O ( 42 n log ⁡ n + 36 n ) O(42n\log n+36n) O(42nlogn+36n),经过计算,是可以通过本题的。

代码采用NTT。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = (1ll << 47) * 7 * 4451 + 1;
const LL g = 3;
const LL N = 300005;string ss, tt;
LL s[125005], t[125005];
LL f[N][8][8];
LL n, m, c;
LL sa[8][N], ta[8][N];
LL tmp[N];
LL rev[N], fa[8], rk[8];LL mul(LL x, LL y) {return (x * y - (LL)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}template<class T> T power(T a, LL b) {T res = 1;for (; b; b >>= 1) {if (b & 1) res = mul(res, a);a = mul(a, a);}return res;
}void change(LL *y, int len) {for (int i = 0; i < len; ++i) {if (i < rev[i]) swap(y[i], y[rev[i]]);}
}void DFT(LL *y, int len, int on) {change(y, len);for (LL h = 2; h <= len; h <<= 1) {LL wn = power(g, (mod - 1) / h);if (on == -1) wn = power(wn, mod - 2); for (int j = 0; j < len; j += h) {LL w = 1ll;for (int k = j; k < j + h / 2; ++k) {LL u = y[k] % mod;LL t = mul(w, y[k + h / 2]);y[k] = (u + t) % mod;y[k + h / 2] = (u - t + mod) % mod;w = mul(w, wn);}}}
}int find(int x) {return ((fa[x] == x) ? x : (fa[x] = find(fa[x])));
}void merge(int i, int j) {int x = find(i), y = find(j);if (rk[x] <= rk[y]) fa[x] = y;else fa[y] = x;if (rk[x] == rk[y] && x != y) ++rk[y];
}void main2() {cin >> ss >> tt;n = ss.length(); m = tt.length();for (int i = 0; i < n; ++i) {s[i] = ss[i] - 'a';sa[s[i]][i] = 1;}for (int i = 0; i < m; ++i) {t[i] = tt[i] - 'a';ta[t[i]][m - i - 1] = 1;}LL len = 1;while (len <= (n + m)) len <<= 1;for (int i = 0; i < len; ++i) {rev[i] = rev[i >> 1] >> 1;if (i & 1) rev[i] |= len >> 1;}for (int i = 0; i < 6; ++i) {DFT(sa[i], len, 1);DFT(ta[i], len, 1);}for (int i = 0; i < 6; ++i) {for (int j = 0; j < 6; ++j) {if (i == j) continue;for (int k = 0; k < len; ++k) {tmp[k] = mul(sa[i][k], ta[j][k]); 	}DFT(tmp, len, -1);LL inv = power(len, mod - 2);for (int k = 0; k < len; ++k) {tmp[k] = mul(tmp[k], inv);if (k + 1 - m >= 0 and k + 1 - m < n) f[k + 1 - m][i][j] = tmp[k];}}}for (int i = 0; i < n - m + 1; ++i) {for (int j = 0; j < 6; ++j) {fa[j] = j; rk[j] = 1;}int sum = 0;for (int j = 0; j < 6; ++j) {for (int k = 0; k < 6; ++k) {if (j == k or !f[i][j][k]) continue;int fx = find(j), fy = find(k);if (fx != fy) {++sum;merge(fx, fy);}}}cout << sum << ' ';}
}int main() {ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);LL _ = 1;
//	cin >> _;while (_--) main2();return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/148577.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

为什么特斯拉和理想,能用很少的SKU获得成功? -审批版

作者|普通一涛 编辑|德新 乔布斯喜欢「为改变混乱繁杂而生的现代简约主义」设计理念&#xff0c;所以苹果产品走的都是超级简洁的路线。 在汽车圈&#xff0c;特斯拉和理想也是简洁主义信奉者。 能用两款车打天下&#xff0c;绝不用三款车&#xff0c;能用三款车的&#xff0…

再学C++ | STL库中可能存在的内存溢出与脏数据问题

STL库中的 vector 是我们使用最频繁的STD容器之一。它具有广泛的应用&#xff0c;并且在性能方面表现出色。然而&#xff0c;其存在一种潜在问题&#xff0c;即溢出。由于 vector 在使用下标访问元素时不会检查索引是否越界&#xff0c;因此很可能导致溢出错误的出现。这种错误…

图神经网络 GNN

之前经常看到图神经网络的内容&#xff0c;但是一直都觉得很难&#xff0c;就没有继续了解&#xff0c;现在抽空学习了一下&#xff0c;简单了解GNN是个什么东西&#xff0c;还没有进行代码实践&#xff0c;随着后续的学习&#xff0c;会继续更新代码的内容&#xff0c;这里先记…

互联网Java工程师面试题·MyBatis 篇·第二弹

目录 16、Xml 映射文件中&#xff0c;除了常见的 select|insert|updae|delete标签之外&#xff0c;还有哪些标签&#xff1f; 17、Mybatis 的 Xml 映射文件中&#xff0c;不同的 Xml 映射文件&#xff0c;id 是否可以重复&#xff1f; 18、为什么说 Mybatis 是半自动 ORM 映射…

conda安装使用jupyterlab注意事项

文章目录 一、conda安装1.1 conda安装1.2 常见命令1.3 常见问题 二、jupyterlab2.1 jupyterlab安装和卸载2.2 常见错误2.2.1 版本冲突&#xff0c;jupyterlab无法启动2.2.2 插件版本冲突 2.3 常用插件2.3.1 debugger2.3.2 jupyterlab_code_formatter 2.4 jupyter技巧 一、conda…

点云处理开发测试题目

点云处理开发测试题目 文件夹中有一个场景的三块点云数据&#xff0c;单位mm。是一个桌子上放了一个纸箱&#xff0c;纸箱上有四个圆孔。需要做的内容是&#xff1a; 1. 绘制出最小外接立方体&#xff0c;得到纸箱的长宽高值。注意高度计算是纸箱平面到桌子平面的距离。 2. 计…

flink自定义窗口分配器

背景 我们知道处理常用的滑动窗口分配器&#xff0c;滚动窗口分配器&#xff0c;全局窗口分配器&#xff0c;会话窗口分配器外&#xff0c;我们可以实现自己的自定义窗口分配器&#xff0c;以实现我们的自己的窗口逻辑 自定义窗口分配器的实现 package wikiedits.assigner;i…

设计模式之抽象工厂模式--创建一系列相关对象的艺术(简单工厂、工厂方法、到抽象工厂的进化过程,类图NS图)

目录 概述概念适用场景结构类图 衍化过程业务需求基本的数据访问程序工厂方法实现数据访问程序抽象工厂实现数据访问程序简单工厂改进抽象工厂使用反射抽象工厂反射配置文件衍化过程总结 常见问题总结 概述 概念 抽象工厂模式是一种创建型设计模式&#xff0c;它提供了一种将相…

Logrus 集成 color 库实现自定义日志颜色输出字符原理

问题背景 下列代码实现了使用 Logurs 日志框架输出日志时根据级别不同&#xff0c;使用对应的自定义颜色进行输出。那么思考下代码的逻辑是怎么实现的呢&#xff1f; 效果如下&#xff1a; 代码如下&#xff1a; import ("fmt""github.com/sirupsen/logrus&q…

ARM汇编与C言语的混合编程

1. C言语如何与汇编进行交互 有些时候&#xff0c;我们需要在汇编代码中调用C代码&#xff0c;或者说C代码中调用汇编代码。 那么&#xff0c;汇编调用C代码&#xff0c;或者C代码调用汇编函数&#xff0c;他们的函数参数、返回值是如何传递的&#xff1f; 对应ARM架构来说&…

angularjs开发环境搭建

Angularjs是一个前端页面应用开发框架&#xff0c;其使用TypeScript作为开发语言&#xff0c;Angularjs的特性包括&#xff0c;使用组件、模板以及依赖注入的开发框架构建可扩展的web应用&#xff0c;使用易于集成的类库支持页面路由、页面表单、前后端接口交互等各种不同特性&…

RabbitMQ-主题模式

接上文 RabbitMQ-发布订阅模式和路由模式 1 主题模式 #通配符 代表0个或多个。*通配符 代表 1个或多个 进行测试&#xff0c;修改配置文件 Configuration public class RabbitConfiguration {Bean("topicExchange") //这里使用预置的Topic类型交换机public Exchan…

Android Studio实现简易计算器(带横竖屏,深色浅色模式,更该按钮颜色,selector,style的使用)

目录 前言 运行结果&#xff1a; 运行截屏&#xff08;p50e&#xff09; apk文件 源码文件 项目结构 总览 MainActivity.java drawable 更改图标的方法&#xff1a; blackbutton.xml bluebuttons.xml greybutton.xml orangebuttons.xml whitebutton.xml layout 布…

嵌入式Linux应用开发-驱动大全-同步与互斥③

嵌入式Linux应用开发-驱动大全-同步与互斥③ 第一章 同步与互斥③1.4 Linux锁的介绍与使用1.4.1 锁的类型1.4.1.1 自旋锁1.4.1.2 睡眠锁 1.4.2 锁的内核函数1.4.2.1 自旋锁1.4.2.2 信号量1.4.2.3 互斥量1.4.2.4 semaphore和 mutex的区别 1.4.3 何时用何种锁1.4.4 内核抢占(pree…

2023年中国体育赛事行业现状及趋势分析:体育与科技逐步融合,推动产业高质量发展[图]

体育赛事运营是指组织体育赛事或获取赛事版权&#xff0c;并进行赛事推广营销、运营管理等一系列商业运作的运营活动。体育赛事运营相关业务主要包括赛事运营与营销、赛事版权运营两个部分。 体育赛事运营行业分类 资料来源&#xff1a;共研产业咨询&#xff08;共研网&#x…

MySQL面试题合集

MySQL面经知识整理 文章目录 MySQL面经知识整理一、查询相关1.什么是MySQL的连接查询&#xff0c;左连接&#xff0c;右连接&#xff0c;内外连接2.SQL慢查询优化的方法3.大表查询如何优化 二、索引相关1.在MySQL中,可以通过哪些命令来查看查询是否使用了索引2.MySQL的最左匹配…

实验三十四、串联型稳压电路参数的选择

一、题目 电路如图1所示。已知输入电压为 50 Hz 50\,\textrm{Hz} 50Hz 的正弦交流电&#xff0c;来源于电源变压器副边&#xff1b;输出电压调节范围为 5 ∼ 20 V 5\sim20\,\textrm V 5∼20V&#xff0c;满载为 0.5 A 0.5\,\textrm A 0.5A&#xff1b; C 3 C_3 C3​ 为消振…

在排序数组中查找元素的第一个和最后一个位置

给你一个按照非递减顺序排列的整数数组 nums&#xff0c;和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target&#xff0c;返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&#xff1a…

结构和基本尺寸

声明 本文是学习GB-T 586-2015 船用法兰铸钢止回阀. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了法兰连接尺寸和密封面按 CB/T 4196、GB/T 2501 的船用法兰铸钢止回阀(以下简 称止回阀)的分类和标记、要求、试验方法、检验规…

使用Java操作Redis

要在Java程序中操作Redis可以使用Jedis开源工具。 一、jedis的下载 如果使用Maven项目&#xff0c;可以把以下内容添加到pom中 <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency> <groupId>redis.clients</groupId>…