排序算法之【快速排序】

📙作者简介: 清水加冰,目前大二在读,正在学习C/C++、Python、操作系统、数据库等。

📘相关专栏:C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。

欢迎点赞 👍 收藏 ⭐留言 📝 如有错误还望各路大佬指正!

✨每一次努力都是一种收获,每一次坚持都是一种成长✨       

在这里插入图片描述

目录

 前言

1. 快速排序

 1.1 hoare版本

1.2 挖坑法

1.3 双指针版本

2. 非递归实现快速排序

总结 


 前言

        快速排序是一种常用的排序算法,也是一种很高效的排序的,它是由Hoare于1962年提出的一种二叉树结构的交换排序方法。本篇文章我将带你深入了解快速排序。


1. 快速排序

        快速排序是一种常用的排序算法,它的基本思想是通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分的所有数据小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列的目的。快速排序常见的实现方法主要分为三种版本:

  1.  hoare版本
  2. 挖坑法版本
  3. 前后指针版本

 我们废话不多说直接步入正题。

 1.1 hoare版本

        hoare版本是选择一个key值(一般选用最左边)例如:

         然后开始从数组两边开始移动寻找符合条件的值,R向左移动寻找小于key的值,L向右移动寻找大于key的值。R和L都找到符合条件的数字后进行交换。

 然后再继续走,直到L和R相遇停止。

 它们相遇的位置是数字3,3比key小,最后再将相遇位置的数据和key的数据进行交换。整个逻辑过程如下图:

 这个图呈现的逻辑过程更加形象,然后我们再从R和L相遇的位置将数组分为两部分,当左半部分和右半部分有序,那么这个数组就会有序,所以我们重复上述过程:

 继续分,数组最终被细分为一个数据或没有数据。

        当数据为1个或没有时就开始返回,执行完毕后左半部分就变得有序,右半部分也是这样的逻辑,返回后两边子数组就会变得有序,进而使整个数组有序。以上便是hoare版本的整个过程。

 接下来我们对代码进行实现:

void PathSort(int* a, int left,int right)
{int key = a[left];while (left < right){while (a[right] > a[key]){right--;}while (a[left] < a[key]){left--;}Swap(&a[left], &a[right]);}Swap(&key, &a[right]);
}

         快速排序的hoare版本有很多的坑,上述的代码是否存在错误呢?

上述的代码存3个问题:

  1. 死循环问题
  2. 数组越界问题
  3. key值交换问题

         首先是死循环问题,R要找比key小的数据,L要找比key大的数据,那当L和R都遇到了和key相同的数据时,它们都停止移动,开始进行交换,交换后仍然相等,以此往复一直交换,进而形成了死循环。

        数组越界问题,R找比key的值,如果R一直到数组遍历结束都没有找到,那它就会发生越界。

        key值交换问题,我们在上述逻辑中,需要将key值(第一个数据)位置上的数据与L和R相遇位置的数据进行交换。而上述代码中交换的是key的值与L和R相遇位置的数据,实际上第一个数据(key值位置)并没有变,这样会造成数据丢失。

 这三个问题都是在编写代码时经常遇到的错误。改正后代码如下:

int PathSort(int* a, int left,int right)
{int key = left;while (left < right){while (right>left && a[right] >= a[key]){right--;}while (right > left && a[left] <= a[key]){left++;}Swap(&a[left], &a[right]);}Swap(&a[key], &a[left]);return left;
}

上述代码我们是进行了一次调整,接下来就是递归使得左右两边数组有序。递归调用这里没有什么问题,重点在于递归结束条件。当递归到最后时,要么是数组只有一个数据,要么是没有数据。

那要如何编写设置结束条件呢?

        以左边递归为例:第一次进入左边区间是0到4,第二次是0到1,然后key是下标为1的数据,key-1=0,第三次调用传入的key-1=begin=0,返回后调用右边,右边没有数据,key+1=2,end=1,所以由此我们可以做出判断,当begin>=end时,就证明递归已经到最小,然后就返回。

 递归过程如下图:

void QuickSort(int* a, int begin,int end)
{if (begin >= end){return;}int key=PathSort(a, begin, end);QuickSort(a, begin, key - 1);QuickSort(a, key + 1, end);
}

         从上述的逻辑过程,可以发现L和R相遇的位置一定比key小(相遇位置比key小交换才有意义),那凭什么说L和R相遇位置一定比key小?

        它是有一个前提的,就是一定要让R先走,但是又会存在两种情况:

  1. 最后一次R不动让L去相遇。
  2.  L不动让R去相遇。

         如下图让R先走,最后是R不动让L去相遇,但如果是L先走,当R到下标为6的位置停止交换后,L开始走,此时相遇位置就会变成下标为6的位置,数据是9比6大。(R不动,让L去相遇)

 当然还有一种情况,最后一次时是L不动让R去相遇:

 两次交换后如上图,此时R先走,11比key大R会继续走,R就会去和L相遇,相遇的位置还是比key小(L和R交换后,L位置数据一定比key小)。

        上述的方式和代码排序很不稳,上述过程最理想的状态是key的值是中位数,这样在分割数组进行递归时能尽可能将数组二分。

最坏的情况就是没有比key小的数据或者大的数据,那么就会造成如下情况:

         这样它的时间复杂度和空间复杂度也会变差,所以我们还需要对hoare版本的进行优化,以避免这样情况的发生。我们可以将左右和中间的值进行比较,取三数的中间值作为key值。优化后:

//三数取中
int GetMid(int* a, int left, int right)
{int mid = (left + right) / 2;if (a[mid] > a[left]){if (a[mid] < a[right]){return mid;}	else if(a[left]>a[right]){return left;}else{return right;}}else//a[left]>a[mid]{if (a[mid] > a[right]){return mid;}else if (a[right] < a[left]){return right;}else{return left;}}
}
int PathSort(int* a, int left,int right)
{int mid = GetMid(a, left, right);Swap(&a[left], &a[mid]);int key = left;while (left < right){while (right>left && a[right] >= a[key]){right--;}while (right > left && a[left] <= a[key]){left++;}Swap(&a[left], &a[right]);}Swap(&a[key], &a[left]);return left;
}

1.2 挖坑法

         挖坑法是对hoare版本思路上的一种优化,挖坑法的整体逻辑如下:

         挖坑法不用考虑R先走还是L先走,开始时第一个数据作为坑位,必须R先走,R找到比key小的数数据填补到坑位,R位置形成新的坑位。然后L开始走,遇到比key大的将数据填补到坑位,然后L位置形成新的坑位。具体代码如下:

int PathSort2(int* a, int left, int right)
{int mid = GetMid(a, left, right);Swap(&a[left], &a[mid]);int key = a[left];//保存key值左边形成第一个坑位int hole = left;while (left < right) {//右边先走,寻找比key小的数据,填补到左边坑位while (right > left && a[right] >=key){right--;}a[hole] = a[right];hole = right;//左边走,寻找比key大的数据,填补到右边坑位while (right > left && a[left] <= key){left++;}a[hole] = a[left];hole = left;}a[hole] =key;return hole;}

1.3 双指针版本

         双指针法是对快排的更近一步优化,相对于前两种,思路和代码也更简单,使用两个指针cur和prev,来控制数据进行调整。

逻辑如下:

         cur遍历数组,如果cur比key小,那就prev向后移动,将prev指向的数据于cur指向的数据进行交换。

 然后cur继续向后走,遇到比key小的数据就重复上述过程:

 直到cur遍历结束停止,之后再将prev最终指向位置的数据与key位置的数据进行交换。最终情况如下图:

 根据上述的逻辑,我们对代码进行实现:

int PathSort3(int* a, int left, int right)
{int cur = left + 1;int prev = left;int key = left;while (cur <= right){if (a[cur] <a[key] ){prev++;Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[key], &a[prev]);return prev;}

         在cur指向1和2时,cur指向的数据依然和prev指向的数据进行了交换(此时cur和prev指向同一个数据),此时交换并没有什么意义,所以我们也可以为了防止prev和cur指向同一位置时进行交换,这里我们可以进行优化:

int PathSort3(int* a, int left, int right)
{int mid = GetMid(a, left, right);Swap(&a[left], &a[mid]);int cur = left + 1;int prev = left;int key = left;while (cur <= right){if (a[cur] <a[key] && ++prev!=cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[key], &a[prev]);return prev;}

        双指针法不需要考虑从哪边先走,也不需要考虑数组越界问题,代码和逻辑都十分的清晰简单。在这三种方法的实际调用时都是使用了递归,来进行分治排序。

         但快速排序使用递归是需要不断进行开空间的,快速排序的二分递归模式类似于满二叉树,我们知道,满二叉树的后两层的节点个数占了总个数的75%,所以我们可以考虑在递归到小区间时使用插入排序来进行优化。

void QuickSort2(int* a, int begin, int end)
{if (begin >= end){return;}if ((end - begin + 1) > 10){int key = PathSort3(a, begin, end);QuickSort(a, begin, key - 1);QuickSort(a, key + 1, end);}else{InsertSort(a + begin, end - begin + 1);}}

同时我们还可以使用非递归的方法来实现快排。

2. 非递归实现快速排序

         上述的快速排序使用了递归,但使用递归还是存在弊端的,递归的深度问题,递归创建的空间在栈区,而栈区的空间大概只有8MB,所以我们还是很有必要学习非递归的方法。

 非递归实现快排需要用到栈的数据结构,通过栈来模拟系统栈区。

 不断地入栈每次调整的数组区间,使用栈的特性来模拟递归调用的调整函数。

 还是以上述的数组为例:

以左边为例:

先入栈0和9(数据的区间下标),然后出栈,取栈顶元素作为调整函数的参数,然后调用调整函数,再将key两边的数组下标区间入栈,直至栈为空结束。具体代码实现如下:

逻辑比较简单,不再进行细节讲解。

void QuickSort3(int* a, int begin, int end)
{Stack st;InItStack(&st);StackPush(&st, end);StackPush(&st, begin);while (!IsEmpty(&st)){int left=TopData(&st);StackPop(&st);int right = TopData(&st);StackPop(&st);int key =PathSort3(a, left, right);if (key < right){StackPush(&st, right);StackPush(&st, key+1);}if (left < key - 1){StackPush(&st, key - 1);StackPush(&st, left);}}DestoryStack(&st);}

总结 

        快速排序是一种极其高效的排序方法,从上述的分析快速排序使用的二分分治排序的方法,可以得出时间复杂度为O(N*logN),同时快速排序并不稳定,我们使用了各种方法来进行优化,使它的时间复杂度稳定在O(N*logN)。好了以上便是本期全部内容,感谢阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/148251.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

[sping] spring core - 依赖注入

[sping] spring core - 依赖注入 所有代码实现基于 Spring Boot3&#xff0c;core 的概念很宽广&#xff0c;这里的 core concept 主要指的就是 Inversion of Control 和 Dependency Injection&#xff0c;其他的按照进度应该是会被放到其他的 section 记录 之前有写过 IoC 和…

MARS: An Instance-aware, Modular and Realistic Simulator for Autonomous Driving

MARS: An Instance-aware, Modular and Realistic Simulator for Autonomous Driving&#xff08;基于神经辐射场的自动驾驶仿真器&#xff09;https://github.com/OPEN-AIR-SUN/marshttps://arxiv.org/pdf/2307.15058.pdfhttps://mp.weixin.qq.com/s/6Ion_DZGJwzs8JOoWMMbPw …

Ubuntu基于Docker快速配置GDAL的Python、C++环境

本文介绍在Linux的Ubuntu操作系统中&#xff0c;基于Docker快速配置Python与C 这2种不同编程语言可用的地理数据处理库GDAL开发环境的方法。 本文就将Python与C 这2种不同编程语言的GDAL模块配置方法分开来介绍&#xff0c;大家依据自己的需求来选择即可——但无论是哪种方法&a…

计算机竞赛 目标检测-行人车辆检测流量计数

文章目录 前言1\. 目标检测概况1.1 什么是目标检测&#xff1f;1.2 发展阶段 2\. 行人检测2.1 行人检测简介2.2 行人检测技术难点2.3 行人检测实现效果2.4 关键代码-训练过程 最后 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 行人车辆目标检测计数系统 …

springmvc-JSR303进行服务端校验分组验证SpringMVC定义Restfull接口异常处理流程RestController异常处理

目录& 1. JSR303 2. JSR303中含有的注解 3. spring中使用JSR303进行服务端校验 3.1 导入依赖包 3.2 添加验证规则 3.3 执行校验 4. 分组验证 4.1 定义分组验证规则 4.2 验证时通过参数指定验证规则 4.3 验证信息的显示 5. SpringMVC定义Restfull接口 5.1 增加s…

opentelemetry、grafana、Prometheus、jaeger、victoria-metrics 介绍、关系与使用

Opentelemetry OTEL 是 OpenTelemetry 的简称&#xff0c; 是 CNCF 的一个可观测性项目&#xff0c;旨在提供可观测性领域的标准化方案&#xff0c;解决观测数据的数据模型、采集、处理、导出等的标准化问题&#xff0c;提供与三方 vendor 无关的服务。 OpenTelemetry 是一组标…

postgresql新特性之Merge

postgresql新特性之Merge 创建测试表测试案例 创建测试表 create table cps.public.test(id integer primary key,balance numeric,status varchar(1));测试案例 官网介绍 merge into test t using ( select 1 id,0 balance,Y status) s on(t.id s.id) -- 当匹配上了,statu…

TempleteMethod

TempleteMethod 动机 在软件构建过程中&#xff0c;对于某一项任务&#xff0c;它常常有稳定的整体操作结构&#xff0c;但各个子步骤却有很多改变的需求&#xff0c;或者由于固有的原因 &#xff08;比如框架与应用之间的关系&#xff09;而无法和任务的整体结构同时实现。如…

嵌入式Linux应用开发-驱动大全-同步与互斥①

嵌入式Linux应用开发-驱动大全-同步与互斥① 第一章 同步与互斥①1.1 内联汇编1.1.1 C语言实现加法1.1.2 使用汇编函数实现加法1.1.3 内联汇编语法1.1.4 编写内联汇编实现加法1.1.5 earlyclobber的例子 1.2 同步与互斥的失败例子1.2.1 失败例子11.2.2 失败例子21.2.3 失败例子3…

使用CrawlSpider爬取全站数据。

CrawpSpider和Spider的区别 CrawlSpider使用基于规则的方式来定义如何跟踪链接和提取数据。它支持定义规则来自动跟踪链接&#xff0c;并可以根据链接的特征来确定如何爬取和提取数据。CrawlSpider可以对多个页面进行同样的操作&#xff0c;所以可以爬取全站的数据。CrawlSpid…

【2023年11月第四版教材】第17章《干系人管理》(合集篇)

第17章《干系人管理》&#xff08;合集篇&#xff09; 1 章节内容2 管理基础3 管理过程3.1 管理的过程★★★ &#xff08;22上44&#xff09;3.2 管理ITTO汇总★★★ 4 过程1-识别干系人4.1 数据收集★★★4.3数据分析4.4 权力利益方格4.5 数据表现&#xff1a;干系人映射分析…

springmvc中DispatcherServlet关键对象

以下代码为 spring boot 2.7.15 中自带的 spring 5.3.29 RequestMappingInfo 请求方法相关信息封装&#xff0c;对应的信息解析在 RequestMappingHandlerMapping 的 createRequestMappingInfo() 中实现。 对于 RequestMapping 赋值的相关信息进行解析 protected RequestMappi…

零基础Linux_11(进程)进程程序替换+实现简单的shell

目录 1. 进程程序替换 1.1 程序替换原理 1.2 execl 接口 1.3 execv execlp execvp 1.4 exec 调各种程序 1.5 execle 接口 2. 实现简单的shell 2.1 打印提示和获取输入 2.2 拆开输入的命令和选项 2.3 创建进程和程序替换执行命令 2.4 内建命令实现路径切换 2.5 my…

创建GCP service账号并管理权限

列出当前GCP项目的所有service account 我们可以用gcloud 命令 gcloud iam service-accounts list gcloud iam service-accounts list DISPLAY NAME EMAIL DISABLED terraform …

自动混剪多段视频、合并音频、添加文案的技巧分享

在如今的社交媒体时代&#xff0c;视频的重要性越来越被人们所重视。许多人喜欢记录生活中的美好瞬间&#xff0c;并将其制作成视频分享给朋友和家人。然而&#xff0c;对于那些拍摄了大量视频的人来说&#xff0c;一个一个地进行剪辑和合并可能是一项令人头痛的任务。但是&…

1.6 计算机网络的性能

思维导图&#xff1a; 1.6.1 计算机网络的性能指标 前言&#xff1a; 我的理解&#xff1a; 这段前言主要介绍了关于计算机网络性能的两个方面的讨论。首先&#xff0c;计算机网络的性能可以通过一些重要的性能指标来衡量。但除了这些指标之外&#xff0c;还有一些非性能特征…

【计算机网络】因特网中的电子邮件

文章目录 简单邮件传送协议SMTP邮件访问协议POP3IMAPHTTP 参考资料 电子邮件为异步通信媒介 因特网电子邮件系统 电子邮件系统的三个构件&#xff1a;用户代理、邮件服务器、邮件发送和读取协议 用户代理 User Agent 即UA 电子邮件客户端软件&#xff0c;用户与电子邮件系统的接…

代码随想录算法训练营第五十六天 | 动态规划 part 14 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和(dp)

目录 1143.最长公共子序列思路代码 1035.不相交的线思路代码 53. 最大子序和&#xff08;dp&#xff09;思路代码 1143.最长公共子序列 Leetcode 思路 本题和718. 最长重复子数组 区别在于这里不要求是连续的了&#xff0c;但要有相对顺序&#xff0c;即&#xff1a;“ace” …

Moonbeam Ignite强势回归

参与Moonbeam上最新的流动性计划 还记得新一轮的流动性激励计划吗&#xff1f;Moonbeam Ignite社区活动带着超过300万枚GLMR奖励来啦&#xff01;体验新项目&#xff0c;顺便薅一把GLMR羊毛。 本次Moonbeam Ignite活动的参与项目均为第二批Moonbeam生态系统Grant资助提案中获…