计算机竞赛 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的人体跌倒检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1.前言

人体跌倒是人们日常生活中常见姿态之一,且跌倒的发生具有随机、难以预测的特点;其次,跌倒会给人体造成不同程度的伤害,很多人跌倒后由于得不到及时的救助而加重受到的伤害,甚至出现残疾或者死亡的情况;同时随着人口老龄化问题的日渐加剧,跌倒已经成为了我国65周岁以上老人受伤致死的主要原因。因此,跌倒事件严重影响着人们的身体健康,跌倒检测具有十分重要的研究意义。

2.实现效果

跌倒效果

在这里插入图片描述

站立、蹲坐效果

在这里插入图片描述

在这里插入图片描述

3.相关技术原理

3.1卷积神经网络

简介

CNN 是目前机器用来识别物体的图像处理器。CNN
已成为当今自动驾驶汽车、石油勘探和聚变能研究领域的眼睛。在医学成像方面,它们可以帮助更快速发现疾病并挽救生命。得益于 CNN 和递归神经网络
(RNN),各种 AI 驱动型机器都具备了像我们眼睛一样的能力。经过在深度神经网络领域数十年的发展以及在处理海量数据的 GPU
高性能计算方面的长足进步,大部分 AI 应用都已成为可能。

原理

人工神经网络是一个硬件和/或软件系统,模仿神经元在人类大脑中的运转方式。卷积神经网络 (CNN)
通常会在多个全连接或池化的卷积层中应用多层感知器(对视觉输入内容进行分类的算法)的变体。

CNN
的学习方式与人类相同。人类出生时并不知道猫或鸟长什么样。随着我们长大成熟,我们学到了某些形状和颜色对应某些元素,而这些元素共同构成了一种元素。学习了爪子和喙的样子后,我们就能更好地区分猫和鸟。

神经网络的工作原理基本也是这样。通过处理标记图像的训练集,机器能够学习识别元素,即图像中对象的特征。

CNN
是颇受欢迎的深度学习算法类型之一。卷积是将滤波器应用于输入内容的简单过程,会带来以数值形式表示的激活。通过对图像反复应用同一滤波器,会生成名为特征图的激活图。这表示检测到的特征的位置和强度。

卷积是一种线性运算,需要将一组权重与输入相乘,以生成称为滤波器的二维权重数组。如果调整滤波器以检测输入中的特定特征类型,则在整个输入图像中重复使用该滤波器可以发现图像中任意位置的特征。

在这里插入图片描述

关键代码

基于tensorflow的代码实现

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data_bak/', one_hot=True)sess = tf.InteractiveSession()# 截断的正太分布噪声,标准差设为0.1def weight_variable(shape):initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)# 卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数# tf.nn.conv2d是TensorFlow中的2维卷积函数,参数中x是输入,W是卷积的参数,比如[5, 5, 1, 32]# 前面两个数字代表卷积核的尺寸,第三个数字代表有多少个channel,因为我们只有灰度单色,所以是1,如果是彩色的RGB图片,这里是3# 最后代表核的数量,也就是这个卷积层会提取多少类的特征# Strides代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点!Padding代表边界的处理方式,这里的SAME代表给# 边界加上Padding让卷积的输出和输入保持同样SAME的尺寸def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')# tf.nn.max_pool是TensorFlow中的最大池化函数,我们这里使用2*2的最大池化,即将2*2的像素块降为1*1的像素# 最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体上缩小图片尺寸,因此池化层# strides也设为横竖两个方向以2为步长。如果步长还是1,那么我们会得到一个尺寸不变的图片def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')# 因为卷积神经网络会利用到空间结构信息,因此需要将1D的输入向量转为2D的图片结构,即从1*784的形式转为原始的28*28的结构
# 同时因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])# 定义我的第一个卷积层,我们先使用前面写好的函数进行参数初始化,包括weights和bias,这里的[5, 5, 1, 32]代表卷积
# 核尺寸为5*5,1个颜色通道,32个不同的卷积核,然后使用conv2d函数进行卷积操作,并加上偏置项,接着再使用ReLU激活函数进行
# 非线性处理,最后,使用最大池化函数max_pool_2*2对卷积的输出结果进行池化操作
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)# 第二层和第一个一样,但是卷积核变成了64
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)# 因为前面经历了两次步长为2*2的最大池化,所以边长已经只有1/4了,图片尺寸由28*28变成了7*7
# 而第二个卷积层的卷积核数量为64,其输出的tensor尺寸即为7*7*64
# 我们使用tf.reshape函数对第二个卷积层的输出tensor进行变形,将其转成1D的向量
# 然后连接一个全连接层,隐含节点为1024,并使用ReLU激活函数
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)# 防止过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)# 接 Softmax分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

3.1YOLOV5简介

基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

3.2 YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络[22](path-aggregation network, PANet)和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

4.数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

3.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

3.2 数据保存

点击save,保存txt。

在这里插入图片描述

5.模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述

训练

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147712.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【高强度聚焦超声模拟器】模拟分层介质中的高强度聚焦超声波束和加热效应(Matlab代码)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

实体行业数字化转型怎么做?线上线下相结合的新零售体系怎么做?

如今,实体行业想要取得收入增长,只做线下业务或者只做线上业务,在当前的市场环境中是难以长久生存的,因此一定要线上线下相结合,将流量运作与线下转化进行充分结合,才能更好地发挥实体优势,带来…

Java后端模拟面试,题集①

1.Spring bean的生命周期 实例化 Instantiation属性赋值 Populate初始化 Initialization销毁 Destruction 2.Spring AOP的创建在bean的哪个时期进行的 (图片转载自Spring Bean的完整生命周期(带流程图,好记)) 3.MQ如…

毛玻璃用户卡交互

效果展示 页面结构组成 从效果展示可以看到&#xff0c;此效果都是比较常规的。主要的核心就是卡片的悬停效果。 CSS 知识点 backdrop-filter 回顾transitiontransform 页面基础布局实现 <section><div class"container"><div class"card&q…

第8期ThreadX视频教程:应用实战,将裸机工程移植到RTOS的任务划分,驱动和应用层交互,中断DMA,C库和中间件处理等注意事项

视频教程汇总帖&#xff1a;【学以致用&#xff0c;授人以渔】2023视频教程汇总&#xff0c;DSP第12期&#xff0c;ThreadX第8期&#xff0c;BSP驱动第26期&#xff0c;USB实战第5期&#xff0c;GUI实战第3期&#xff08;2023-10-01&#xff09; - STM32F429 - 硬汉嵌入式论坛 …

【springboot3.x 记录】关于spring-cloud-gateway引入openfeign导致的循环依赖问题

最近升级springboot3真是一挖一个坑&#xff0c;又给我发现了 spring-cloud-gateway 引入 openfeign 会导致循环依赖异常&#xff0c;特此记录一下这个坑 一、发现问题 网关里面有一个全局的过滤器&#xff0c;因为要查询一些配置信息&#xff0c;目前是通过 feign client 的方…

掌机小霸王,开源俄罗斯方块小游戏

俄罗斯方块试玩gi PC或手机 点开即玩: https://chvin.github.io/react-tetris/?lanzh-cn 也可以扫码开玩: 实现了数据的持久化 游戏进度的数据可以持久存储到本地浏览器, 即使刷新网页也无需重新开始游戏 小结: 俄罗斯方块属于超级经典的游戏, 感兴趣可以玩一下, 找回一点童…

【初识Linux】上

初识Linux上 一、Linux背景1.1 UNIX发展的历史1.2 UNIX发展的历史 二、开源三、官网Linux官网 四、企业应用现状五、发行版本六、 os概念&#xff0c;定位 本博客简介 初始Linux操作系统初识shell命令 ,了解若干背景知识。使用常用Linux命令了解Linux权限概念与思想,能深度理解…

AMD GPU 内核驱动分析(三)-dma-fence 同步工作模型

在Linux Kernel 的AMDGPU驱动实现中&#xff0c;dma-fence扮演着重要角色&#xff0c;AMDGPU的Render/解码操作可能涉及到多个方面同时引用buffer的情况&#xff0c;以渲染/视频解码场景为例&#xff0c;应用将渲染/解码命令写入和GPU共享的BUFFER之后&#xff0c;需要将任务提…

海外媒体发稿:商务视频推广销售利器之完全指南

在当今数字化时代&#xff0c;商务视频推广已经成为了企业获取市场份额和提升销售业绩的重要手段。视频作为一种视听媒体&#xff0c;拥有更强大的感染力和传达信息的能力&#xff0c;因此在各种销售场景中得到了广泛应用。本文为大家提供了一份完全指南&#xff0c;帮助你了解…

代码随想录Day9 栈与队列 LeetCodeT20 有效的括号 T1047 删除字符串中所有相邻重复项 T150 逆波兰表达式求值

题目详细思路和解法来自于:代码随想录 (programmercarl.com) LeetCode T20 有效的括号 题目思路 这道题分为三种情况 1.左括号多了 ([{}]() 2.括号不匹配 [{(]}] 3.右括号多了 []{}()))) 处理思路:我们在遇到左括号的时候,直接入栈其对应的右括号即可…

【Java】微服务——微服务介绍和Eureka注册中心

目录 1.微服务介绍2.服务拆分和远程调用2.1.提供者与消费者 3.Eureka注册中心3.1.Eureka的结构和作用3.2.Eureka的结构3.3.搭建Eureka服务3.3.1.引入eureka依赖3.3.2.编写配置文件 3.4.服务注册及拉1&#xff09;引入依赖2&#xff09;配置文件3&#xff09;启动多个user-servi…

UE5.1编辑器拓展【二、脚本化资产行为,快速更改资产名字,1.直接添加前缀或后缀2.通过资产类判断添加修改前缀】

目录 了解相关的函数 第一种做法&#xff1a;自定义添加选择资产的前缀或后缀 代码 效果 第二种做法&#xff1a;通过映射来获取资产类型添加前缀和修改前缀 映射代码 代码 效果 在之前一章中&#xff0c;我们创建了插件&#xff0c;用来扩展编辑器的使用&#xff1a; …

【高阶数据结构】哈希(哈希表、哈希桶)

⭐博客主页&#xff1a;️CS semi主页 ⭐欢迎关注&#xff1a;点赞收藏留言 ⭐系列专栏&#xff1a;C进阶 ⭐代码仓库&#xff1a;C进阶 家人们更新不易&#xff0c;你们的点赞和关注对我而言十分重要&#xff0c;友友们麻烦多多点赞&#xff0b;关注&#xff0c;你们的支持是我…

微服务技术栈-认识微服务和第一个微服务Demo

文章目录 前言一、认识微服务二、微服务技术栈三、Eureka注册中心四、微服务DEMO1、搭建eureka-server2、服务注册和服务发现 总结 前言 随着业务的不断复杂&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐演变为现在流行的微服务架构。 本章就从微服…

VD6283TX环境光传感器驱动开发(1)----获取ID

VD6283TX环境光传感器驱动开发----1.获取ID 概述视频教学样品申请源码下载模块参数IIC接线方式设备ID生成STM32CUBEMX串口配置 IIC配置串口重定向模块地址获取ID主函数结果演示 概述 环境光传感器是一种光电探测器&#xff0c;能够将光转换为电压或者电流&#xff0c;使用多光…

计算机网络常见面试题

梳理计算机网络相关的面试题&#xff0c;相关知识结构主要参考谢希仁老师的《计算机网络&#xff08;第五版&#xff09;》一书&#xff0c;并整理互联网上常见面试题。 计算机网络性能指标 性能指标从不同的方面来度量计算机网络的性能。下面介绍常用的七个性能指标。 1、速…

23-properties文件和xml文件以及dom4j的基本使用操作

特殊文件 我们利用这些特殊文件来存放我们 java 中的数据信息&#xff0c;当数据量比较大的时候&#xff0c;我们可以利用这个文件对数据进行快速的赋值 对于多个用户数据的存储的时候我们要用这个XML来进行存储 关于这些特殊文件&#xff0c;我们主要学什么 了解他们的特点&…

华为云云耀云服务器L实例评测 | 实例使用教学之软件安装:华为云云耀云服务器环境下安装 Docker

华为云云耀云服务器L实例评测 &#xff5c; 实例使用教学之软件安装&#xff1a;华为云云耀云服务器环境下安装 Docker 介绍华为云云耀云服务器 华为云云耀云服务器 &#xff08;目前已经全新升级为 华为云云耀云服务器L实例&#xff09; 华为云云耀云服务器是什么华为云云耀云…

想要精通算法和SQL的成长之路 - 验证二叉搜索树和不同的二叉搜索树

想要精通算法和SQL的成长之路 - 验证二叉搜索树和不同的二叉搜索树 前言一. 验证二叉搜索树二. 不同的二叉搜索树三. 不同的二叉搜索树II 前言 想要精通算法和SQL的成长之路 - 系列导航 二叉搜索树的定义&#xff1a; 节点的左子树只包含 小于 当前节点的数。节点的右子树只包…