2.硬盘和内存区别

2.2 磁盘比内存慢几万倍?

存储器方面的设备,分类比较多,那我们肯定不能只买一种存储器,比如你除了要买内存,还要买硬盘,而针对硬盘我们还可以选择是固态硬盘还是机械硬盘。

相信大家都知道内存和硬盘都属于计算机的存储设备,断电后内存的数据是会丢失的,而硬盘则不会,因为硬盘是持久化存储设备,同时也是一个 I/O 设备。

但其实 CPU 内部也有存储数据的组件,这个应该比较少人注意到,比如寄存器、CPU L1/L2/L3 Cache 也都是属于存储设备,只不过它们能存储的数据非常小,但是它们因为靠近 CPU 核心,所以访问速度都非常快,快过硬盘好几个数量级别。

问题来了,那机械硬盘、固态硬盘、内存这三个存储器,到底和 CPU L1 Cache 相比速度差多少倍呢?

在回答这个问题之前,我们先来看看「存储器的层次结构」,好让我们对存储器设备有一个整体的认识。

存储器的层次结构

我们可以把 CPU 比喻成我们的大脑,大脑正在思考的东西,就好比 CPU 中的寄存器,处理速度是最快的,但是能存储的数据也是最少的,毕竟我们也不能一下同时思考太多的事情,除非你练过。

我们大脑中的记忆,就好比 CPU Cache,中文称为 CPU 高速缓存,处理速度相比寄存器慢了一点,但是能存储的数据也稍微多了一些。

CPU Cache 通常会分为 L1、L2、L3 三层,其中 L1 Cache 通常分成「数据缓存」和「指令缓存」,L1 是距离 CPU 最近的,因此它比 L2、L3 的读写速度都快、存储空间都小。我们大脑中短期记忆,就好比 L1 Cache,而长期记忆就好比 L2/L3 Cache。

寄存器和 CPU Cache 都是在 CPU 内部,跟 CPU 挨着很近,因此它们的读写速度都相当的快,但是能存储的数据很少,毕竟 CPU 就这么丁点大。

知道 CPU 内部的存储器的层次分布,我们放眼看看 CPU 外部的存储器。

当我们大脑记忆中没有资料的时候,可以从书桌或书架上拿书来阅读,那我们桌子上的书,就好比内存,我们虽然可以一伸手就可以拿到,但读写速度肯定远慢于寄存器,那图书馆书架上的书,就好比硬盘,能存储的数据非常大,但是读写速度相比内存差好几个数量级,更别说跟寄存器的差距了。

img

我们从图书馆书架取书,把书放到桌子上,再阅读书,我们大脑就会记忆知识点,然后再经过大脑思考,这一系列过程相当于,数据从硬盘加载到内存,再从内存加载到 CPU 的寄存器和 Cache 中,然后再通过 CPU 进行处理和计算。

对于存储器,它的速度越快、能耗会越高、而且材料的成本也是越贵的,以至于速度快的存储器的容量都比较小。

CPU 里的寄存器和 Cache,是整个计算机存储器中价格最贵的,虽然存储空间很小,但是读写速度是极快的,而相对比较便宜的内存和硬盘,速度肯定比不上 CPU 内部的存储器,但是能弥补存储空间的不足。

存储器通常可以分为这么几个级别:

img

  • 寄存器;

  • CPU Cache;

    1. L1-Cache;

    2. L2-Cache;

    3. L3-Cahce;

  • 内存;

  • SSD/HDD 硬盘

寄存器

最靠近 CPU 的控制单元和逻辑计算单元的存储器,就是寄存器了,它使用的材料速度也是最快的,因此价格也是最贵的,那么数量不能很多。

寄存器的数量通常在几十到几百之间,每个寄存器可以用来存储一定的字节(byte)的数据。比如:

  • 32 位 CPU 中大多数寄存器可以存储 4 个字节;

  • 64 位 CPU 中大多数寄存器可以存储 8 个字节。

寄存器的访问速度非常快,一般要求在半个 CPU 时钟周期内完成读写,CPU 时钟周期跟 CPU 主频息息相关,比如 2 GHz 主频的 CPU,那么它的时钟周期就是 1/2G,也就是 0.5ns(纳秒)。

CPU 处理一条指令的时候,除了读写寄存器,还需要解码指令、控制指令执行和计算。如果寄存器的速度太慢,则会拉长指令的处理周期,从而给用户的感觉,就是电脑「很慢」

CPU Cache

CPU Cache 用的是一种叫 SRAM(*Static Random-Access* Memory,静态随机存储器) 的芯片。

SRAM 之所以叫「静态」存储器,是因为只要有电,数据就可以保持存在,而一旦断电,数据就会丢失了。

在 SRAM 里面,一个 bit 的数据,通常需要 6 个晶体管,所以 SRAM 的存储密度不高,同样的物理空间下,能存储的数据是有限的,不过也因为 SRAM 的电路简单,所以访问速度非常快。

CPU 的高速缓存,通常可以分为 L1、L2、L3 这样的三层高速缓存,也称为一级缓存、二级缓存、三级缓存。

img

L1 高速缓存

L1 高速缓存的访问速度几乎和寄存器一样快,通常只需要 2~4 个时钟周期,而大小在几十 KB 到几百 KB 不等。

每个 CPU 核心都有一块属于自己的 L1 高速缓存,指令和数据在 L1 是分开存放的,所以 L1 高速缓存通常分成指令缓存数据缓存

在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L1 Cache 「数据」缓存的容量大小:

$ cat /sys/devices/system/cpu/cpu0/cache/index0/size
32K

而查看 L1 Cache 「指令」缓存的容量大小,则是:

$ cat /sys/devices/system/cpu/cpu0/cache/index1/size
32K
L2 高速缓存

L2 高速缓存同样每个 CPU 核心都有,但是 L2 高速缓存位置比 L1 高速缓存距离 CPU 核心 更远,它大小比 L1 高速缓存更大,CPU 型号不同大小也就不同,通常大小在几百 KB 到几 MB 不等,访问速度则更慢,速度在 10~20 个时钟周期。

在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L2 Cache 的容量大小:

$ cat /sys/devices/system/cpu/cpu0/cache/index2/size
256K
L3 高速缓存

L3 高速缓存通常是多个 CPU 核心共用的,位置比 L2 高速缓存距离 CPU 核心 更远,大小也会更大些,通常大小在几 MB 到几十 MB 不等,具体值根据 CPU 型号而定。

访问速度相对也比较慢一些,访问速度在 20~60个时钟周期。

在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L3 Cache 的容量大小:

$ cat /sys/devices/system/cpu/cpu0/cache/index3/size 
3072K

存储器的层次关系

现代的一台计算机,都用上了 CPU Cahce、内存、到 SSD 或 HDD 硬盘这些存储器设备了。

其中,存储空间越大的存储器设备,其访问速度越慢,所需成本也相对越少。

CPU 并不会直接和每一种存储器设备直接打交道,而是每一种存储器设备只和它相邻的存储器设备打交道。

比如,CPU Cache 的数据是从内存加载过来的,写回数据的时候也只写回到内存,CPU Cache 不会直接把数据写到硬盘,也不会直接从硬盘加载数据,而是先加载到内存,再从内存加载到 CPU Cache 中。

img

 

所以,每个存储器只和相邻的一层存储器设备打交道,并且存储设备为了追求更快的速度,所需的材料成本必然也是更高,也正因为成本太高,所以 CPU 内部的寄存器、L1\L2\L3 Cache 只好用较小的容量,相反内存、硬盘则可用更大的容量,这就我们今天所说的存储器层次结构

另外,当 CPU 需要访问内存中某个数据的时候,如果寄存器有这个数据,CPU 就直接从寄存器取数据即可,如果寄存器没有这个数据,CPU 就会查询 L1 高速缓存,如果 L1 没有,则查询 L2 高速缓存,L2 还是没有的话就查询 L3 高速缓存,L3 依然没有的话,才去内存中取数据。

下面这张表格是不同层级的存储器之间的成本对比图:

img

你可以看到 L1 Cache 的访问延时是 1 纳秒,而内存已经是 100 纳秒了,相比 L1 Cache 速度慢了 100 倍。另外,机械硬盘的访问延时更是高达 10 毫秒,相比 L1 Cache 速度慢了 10000000 倍,差了好几个数量级别。

在价格上,每生成 MB 大小的 L1 Cache 相比内存贵了 466 倍,相比机械硬盘那更是贵了 175000 倍。

我在某东逛了下各个存储器设备的零售价,8G 内存 + 1T 机械硬盘 + 256G 固态硬盘的总价格,都不及一块 Intle i5-10400 的 CPU 的价格,这款 CPU 的高速缓存的总大小也就十多 MB

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1475326.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

常见的自动化工具开发必备的源代码!

随着科技的飞速发展,自动化工具已经成为我们日常工作中不可或缺的一部分,自动化工具不仅极大地提高了工作效率,还降低了人为错误的可能性。 然而,要想开发出高效、稳定的自动化工具,掌握一些常见的源代码技巧是至关重…

列式存储和行式存储

列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的,简单来说两者的区别就是如何组织表。 原文: Row-based storage stores atable in a sequence of rows. Column-based storage storesa table in …

方圆资源网,方圆资源官网

在当今这个信息化高速发展的时代,方圆资源网络已成为推动社会进步、促进经济发展的重要力量。方圆资源网不仅汇聚了海量的信息资源,更为我们提供了一个高效、便捷的信息交流平台。本文旨在详细介绍资源网的概念、特点、功能以及其在现代社会中的重要意义…

C#写的winform项目无法打包发布?谈谈思路

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…

单片机学习(17)--AD/DA

AD/DA 16.1AD/DA的基础知识1.AD/DA介绍2.硬件电路模型3.硬件电路4.运算放大器5.运放电路6.DA原理6.AD原理7.AD/DA性能指标8.XPT2046 16.2AD模数转换&DA数模转换1.AD模数转换(1)工程目录(2)main.c函数(3&#xff09…

Springboot实战:AI大模型+亮数据代理助力短视频时代

目录 前言1.如何入门亮数据1.1、注册登录1.2、注册账号1.3、登录1.4、购买静态住宅代理1.5、展示购买的代理 2. 使用Springboot、AI大模型构建系统2.1 使用Springboot、AI大模型构建爬虫2.2、在Springboot项目添加工具 3、编写代码,爬取视频素材3.1、代码里使用代理…

电脑选购全解析!你需要知道的一切!

在选择电脑类型时,你可以考虑以下因素: 你的主要用途是什么? 你是否需要携带电脑? 你的预算是多少? 你对性能和图形要求有多高? 你是否需要特定的软硬件功能?根据这些因素,你可以…

音频demo:使用fdk-aac将PCM数据编码成aac数据

1、README a. 编译 编译demo 本demo是使用的开源项目fdk-aac将PCM数据编码成aac音频文件。由于提供的.a静态库是在x86_64的机器上编译的,所以默认情况下仅支持该架构的主机上编译运行。 $ make编译fdk-aac(可选) 如果想要在其他架构的CP…

权力之望怎么下载客户端 权力之望一键下载

《权力之望》是一款由NX3 Games开发、Smilegate发行的多人在线动作MMORPG游戏。这款游戏最大的特点是高度的自由度和丰富的角色定制选项。我们在游戏中不仅可以自由更换武器,而且游戏还提供了54种能力和60多种职业选择,让我们可以根据自己的游戏风格和喜…

YOLOv9报错:AttributeError: ‘list‘ object has no attribute ‘view‘

报错信息如下: red_distri, pred_scores torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( AttributeError: ‘list’ object has no attribute ‘view’ 解决方法: 去yolov9/utils/loss_tal.py把167行代码更改&#…

人工智能音乐软件Suno上架App Store;Meta 推出 3D 内容生成 AI 模型

🦉 AI新闻 🚀 人工智能音乐软件Suno上架App Store 摘要:IT之家消息,Suno是一款AI音乐生成软件,已登陆苹果App Store(国区暂未上架)。用户可通过文字描述或录音创建音乐,并生成4分钟…

html+css+js随机验证码

随机画入字符、线条 源代码在图片后面 点赞❤️关注&#x1f60d;收藏⭐️ 互粉必回 图示 源代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"…

【Linux系列2】Cmake安装记录

方法一 1. 查看当前cmake版本 [rootlocalhost ~]# cmake -version cmake version 2.8.12.22. 进行卸载 [rootlocalhost ~]# yum remove -y cmake3. 进行安装包的下载&#xff0c;也可以下载好安装包后传至相应的目录 [rootlocalhost ~]# mkdir /opt/cmake [rootlocalhost ~…

安卓稳定性之crash详解

目录 前言一、Crash 的基本原理二、Crash 分析思路三、实例分析四、预防措施五、参考链接 前言 在开发和测试 Android 应用程序时&#xff0c;遇到应用程序崩溃是很常见的情况。 Android 崩溃指的是应用程序因为异常或错误而无法正常执行&#xff0c;并且导致应用强制关闭。 一…

算法训练营day26--455.分发饼干+376. 摆动序列+53. 最大子序和

一、455.分发饼干 题目链接&#xff1a;https://leetcode.cn/problems/assign-cookies/ 文章讲解&#xff1a;https://www.programmercarl.com/0455.%E5%88%86%E5%8F%91%E9%A5%BC%E5%B9%B2.html 视频讲解&#xff1a;https://www.bilibili.com/video/BV1MM411b7cq 1.1 初见思…

在PyTorch中使用TensorBoard

文章目录 在PyTorch中使用TensorBoard1.安装2.TensorBoard使用2.1创建SummaryWriter实例2.2利用add_scalar()记录metrics2.3关闭Writer2.4启动TensorBoard 3.本地连接服务器使用TensorBoard3.1方法一&#xff1a;使用SSH命令进行本地端口转发3.2方法二&#xff1a;启动TensorBo…

【ROS2】Ubuntu 24.04 源码编译安装 Jazzy Jalisco

目录 系统要求 系统设置 设置区域启用所需的存储库安装开发工具 构建 ROS 2 获取 ROS 2 代码使用 rosdep 安装依赖项安装额外的 RMW 实现&#xff08;可选&#xff09;在工作区构建代码 设置环境 尝试一些例子 下一步 备用编译器 Clang保持最新状态 故障排除 卸载 系统要求 当前…

软件测试下的AI之路(5)

😏作者简介:博主是一位测试管理者,同时也是一名对外企业兼职讲师。 📡主页地址:【Austin_zhai】 🙆目的与景愿:旨在于能帮助更多的测试行业人员提升软硬技能,分享行业相关最新信息。 💎声明:博主日常工作较为繁忙,文章会不定期更新,各类行业或职场问题欢迎大家…

智能遥测终端机RTU-精确监控 智能运维

智能遥测终端机RTU是物联网领域中一种重要的设备&#xff0c;它的出现无疑为远程监控和数据采集提供了强大的支持。计讯物联智能遥测终端机RTU具备数据采集、处理、通信和控制功能的设备&#xff0c;可以实现对远程设备的监控与控制。它在物联网系统中扮演着桥梁的角色&#xf…

前端程序员如何转大模型?收藏这一篇就够了(非常详细)

最近各行各业都不容易啊&#xff0c;那个中金女员工跳楼事件频繁上热点&#xff0c;引起广泛的关注&#xff0c;本质上还是经济下行&#xff0c;我们互联网行业也是如此&#xff0c;特别是程序员&#xff0c;本来就有35岁危机&#xff0c;加上行业不景气&#xff0c;大厂都在裁…