BigDecimal(double)和BigDecimal(String)有什么区别?BigDecimal如何精确计数?

BigDecimal(double)和BigDecimal(String)的区别

double是不精确的,所以使用一个不精确的数字来创建BigDecimal,得到的数字也是不精确的。如0.1这个数字,double只能表示他的近似值。所以,当我们使用new BigDecimal(0.1)创建一个BigDecimal 的时候,其实创建出来的值并不是正好等于0.1的。而是0.1000000000000000055511151231257827021181583404541015625。这是因为double自身表示的只是一个近似值。而对于BigDecimal(String) ,当我们使用new BigDecimal("0.1")创建一个BigDecimal 的时候,其实创建出来的值正好就是等于0.1的。那么他的标度也就是1

BigDecimal如何精确计数?

BigDecimal,实际上一个BigDecimal是通过一个"无标度值"和一个"标度"来表示一个数的。

无标度值(Unscaled Value):这是一个整数,表示BigDecimal的实际数值。
标度(Scale):这是一个整数,表示小数点后的位数。
BigDecimal的实际数值计算公式为:unscaledValue × 10^(-scale)。

假设有一个BigDecimal表示的数值是123.45,那么无标度值(Unscaled Value)是12345。标度(Scale)是2。因为123.45 = 12345 × 10^(-2)。

涉及到的字段就这几个:

什么是标度?

除了scale这个字段,在BigDecimal中还提供了scale()方法,用来返回这个BigDecimal的标度。

scale到底表示的是什么?

当标度为正数时,它表示小数点后的位数。例如,在数字123.45中,他的无标度值为12345,标度是2。
当标度为零时,BigDecimal表示一个整数。
当标度为负数时,它表示小数点向左移动的位数,相当于将数字乘以 10 的绝对值的次方。例如,一个数值为1234500,那么他可以用value是12345,scale为-2来表示,因为1234500 * 10^(-2) = 12345。(当需要处理非常大的整数时,可以使用负数的标度来指定小数点左侧的位数。这在需要保持整数的精度而又不想丢失尾部零位时很有用。)

我们都知道,想要创建一个对象,需要使用该类的构造方法,在BigDecimal中一共有以下4个构造方法:

BigDecimal(int);
BigDecimal(double);
BigDecimal(long);
BigDecimal(String)

以上四个方法,创建出来的BigDecimal的标度(scale)是不同的。

其中 BigDecimal(int)和BigDecimal(long) 比较简单,因为都是整数,所以他们的标度都是0。

而BigDecimal(double) 和BigDecimal(String)的标度就有很多学问了。

BigDecimal(double)的问题

BigDecimal中提供了一个通过double创建BigDecimal的方法——BigDecimal(double) ,但是,同时也给我们留了一个坑!
因为我们知道,double表示的小数是不精确的,如0.1这个数字,double只能表示他的近似值。
所以,当我们使用new BigDecimal(0.1)创建一个BigDecimal 的时候,其实创建出来的值并不是正好等于0.1的。
而是0.1000000000000000055511151231257827021181583404541015625。这是因为double自身表示的只是一个近似值。

所以,如果我们在代码中,使用BigDecimal(double) 来创建一个BigDecimal的话,那么是损失了精度的,这是极其严重的。

使用BigDecimal(String)创建

而对于BigDecimal(String) ,当我们使用new BigDecimal("0.1")创建一个BigDecimal 的时候,其实创建出来的值正好就是等于0.1的。那么他的标度也就是1。
但是需要注意的是,new BigDecimal("0.10000")和new BigDecimal("0.1")这两个数的标度分别是5和1,如果使用BigDecimal的equals方法比较,得到的结果是false。


那么,想要创建一个能精确的表示0.1的BigDecimal,请使用以下两种方式:

BigDecimal recommend1 = new BigDecimal("0.1");
BigDecimal recommend2=BigDecimal.value0f(0.1);

以上第二种方法善于思考的童鞋, 应该已经发现了既然Double本身就不是精确数字, 又怎么能保证BugDecimal的经度呢? 

这个问题看源码就能发现, 它首先将小数转为了字符串, 而toString() 方法又可以将double转为字符串, 这样其实是调用的BigDecimal(String)方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1474642.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Report Design Analysis报告之logic level详解

目录 一、前言 二、Logic Level distribution 2.1 logic level配置 2.2 Logic Level Distribution报告 2.3 Logic Level 报告详情查看 2.4 Route Distributions 报告详情查看 2.5 示例代码 一、前言 ​在工程设计中,如果需要了解路径的逻辑级数,可…

【python技巧】parser传入参数

参考网址: https://lightning.ai/docs/pytorch/LTS/api/pytorch_lightning.utilities.argparse.html#pytorch_lightning.utilities.argparse.add_argparse_args 1. 简单传入参数. parse_known_args()方法的作用就是把不在预设属性里的参数也返回,比如下面这个例子, 执行pytho…

2024吉他手的超级助手Guitar Pro8中文版本发布啦!

亲爱的音乐爱好者们,今天我要来和你们分享一款让我彻底沉迷的软件—Guitar Pro。如果你是一名热爱吉他的朋友,那么接下来的内容你可要瞪大眼睛仔细看哦!👀🎶 Guitar Pro免费绿色永久安装包下载:&#xff0…

搭建NEMU与QEMU的DiffTest环境(动态库方式)

搭建NEMU与QEMU的DiffTest环境(动态库方式) 1 DiffTest原理简述2 编译NEMU3 编译qemu-dl-difftest3.1 修改NEMU/scripts/isa.mk3.2 修改NEMU/tools/qemu-dl-diff/src/diff-test.c3.3 修改NEMU/scripts/build.mk3.4 让qemu-dl-difftest带调试信息3.5 编译…

React中的useMemo和memo

引言 React是一个声明式的JavaScript库,用于构建用户界面。在开发过程中,性能优化是一个重要的方面。useMemo和memo是React提供的工具,用于帮助开发者避免不必要的渲染和计算,从而提升应用性能。 问题背景 在React应用中&#…

Ubuntu编译 OSG

目录 一、安装步骤 二、配置 1、数据文件配置 2、OSG环境变量配置 一、安装步骤 在Ubuntu上安装OSG(OpenSceneGraph),你可以按照以下步骤操作: 打开终端,更新你的包管理器的包列表: sudo apt update 安装必要的依赖库 sudo apt install libglu1-mesa-dev freeglu…

数字信号处理及MATLAB仿真(3)——量化的其他概念

上回书说到AD转换的两个步骤——量化与采样两个步骤。现在更加深入的去了解以下对应的概念。学无止境,要不断地努力才有好的收获。万丈高楼平地起,唯有打好基础,才能踏实前行。 不说了,今天咱们继续说说这两个步骤,首先…

[激光原理与应用-101]:南京科耐激光-激光焊接-焊中检测-智能制程监测系统IPM介绍 - 5 - 3C行业应用 - 电子布局类型

目录 前言: 一、激光在3C行业的应用概述 1.1 概述 1.2 激光焊接在3C-电子行业应用 二、3C电子行业中激光焊接 2.1 纽扣电池 2.2 均温板 2.3 指纹识别器 2.4 摄像头模组 2.5 IC芯片切割 三、3C行业中激光切割 四、激光在3C行业中的其他应用 4.1 涂层去除…

【机器学习实战】Datawhale夏令营:Baseline精读笔记2

# AI夏令营 # Datawhale # 夏令营 在原有的Baseline上除了交叉验证,还有一种关键的优化方式,即特征工程。 如何优化特征,关系着我们提高模型预测的精准度。特征工程往往是对问题的领域有深入了解的人员能够做好的部分,因为我们要…

day01:项目概述,环境搭建

文章目录 软件开发整体介绍软件开发流程角色分工软件环境 外卖平台项目介绍项目介绍定位功能架构 产品原型技术选型 开发环境搭建整体结构:前后端分离开发前后端混合开发缺点前后端分离开发 前端环境搭建Nginx 后端环境搭建熟悉项目结构使用Git进行版本控制数据库环…

记录问题:解决vscode找不到Python自定义模块,报错No module named ‘xxx‘

1. 背景 我非要用vscode,不用pycharm,哼! 2. 问题 由于 import xx 自定义的模块, python run 的时候会报错 No module named ‘xxx‘ 报错信息: Traceback (most recent call last):File "d:\work\sf_financ…

90元搭建渗透/攻防利器盒子!【硬件篇】

前言 以下内容请自行思考后进行实践。 使用场景 在某些情况下开软件进行IP代理很麻烦,并不能实现真正全局,而且还老容易忘记,那么为了在实景工作中,防止蓝队猴子封IP,此文正现。 正文 先说一下实验效果&#xff1…

【JavaEE】多线程进阶

🤡🤡🤡个人主页🤡🤡🤡 🤡🤡🤡JavaEE专栏🤡🤡🤡 文章目录 1.锁策略1.1悲观锁和乐观锁1.2重量级锁和轻量级锁1.3自旋锁和挂起等待锁1.4可…

【讲解下iOS语言基础】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

昇思25天学习打卡营第14天|Pix2Pix实现图像转换

Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到…

git简介以及git操作软件下载以及安装教程,git基础指令介绍,持续更新中~

什么是Git? 最近在学一些git的基础指令,仔细地了解了一下git,发现了他的强大功能,分享一下: Git是一个强大的工具,它在软件开发中扮演着至关重要的角色。 Git是一个开源的分布式版本控制系统,…

使用RAID与LVM磁盘阵列技术

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 目录 一、RAID磁盘冗余阵列 1、部署磁盘整列 2、损坏磁盘阵列及修复 3、磁盘阵列备份盘 4、删除磁盘阵列 二、LVM逻辑卷管理器 致谢 一、RAID…

1958.力扣每日一题7/7 Java(100%解)

博客主页:音符犹如代码系列专栏:算法练习关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 首先将指定位…

反编译kasada

继续研究反编译 这次的网站是 一个航司网站 他有 akamai和 kasada 两种防护 akamai 没啥好说的 结构分析 最开始有个长字符串 处理成 一个十几万的数组 通过 r.W[0] 走什么分支 还有数据的存取 M是一个98个函数组成的数组 代表不同的执行逻辑 这里给他转成了 switch case…

Python3极简教程(一小时学完)中

异常 在这个实验我们学习 Python 的异常以及如何在你的代码中处理它们。 知识点 NameErrorTypeError异常处理(try..except)异常抛出(raise)finally 子句 异常 在程序执行过程中发生的任何错误都是异常。每个异常显示一些相关…