【Python】基于动态规划和K聚类的彩色图片压缩算法

description

引言

当想要压缩一张彩色图像时,彩色图像通常由数百万个颜色值组成,每个颜色值都由红、绿、蓝三个分量组成。因此,如果我们直接对图像的每个像素进行编码,会导致非常大的数据量。为了减少数据量,我们可以尝试减少颜色的数量,从而降低存储需求。

1.主要原理

(一)颜色聚类(Color Clustering):

首先,使用 KMeans 聚类算法将图像中的颜色值聚类为较少数量的颜色簇。聚类的数量由 n_clusters 参数指定。每个像素被归类到与其最接近的聚类中心所代表的颜色簇。颜色聚类的过程大致如下:

  1. 图像转换: 首先,彩色图像被转换为一个包含所有像素颜色值的数据集。每个像素的颜色通常由红、绿、蓝三个分量组成,因此数据集中的每个样本都是一个三维向量,表示一个像素的颜色。
  2. 选择聚类数量: 在应用 KMeans 算法之前,需要确定聚类的数量。这个数量通常由用户指定,通过参数 n_clusters 控制。
  3. 应用 KMeans 算法: 将 KMeans 算法应用于颜色数据集,将颜色值聚类为指定数量的簇。每个簇的质心代表了该簇的平均颜色。
  4. 像素映射: 每个像素的颜色被映射到最接近的簇的质心所代表的颜色。这样,整个图像被转换为由较少数量的颜色值表示的压缩图像。

通过颜色聚类,彩色图像的颜色数量得以减少,从而实现了数据的压缩。压缩后的图像仍然能够保持视觉上的相似性,同时大大降低了存储空间的需求。

(二)动态规划量化(Dynamic Programming Quantization):

接下来,通过动态规划量化算法对颜色进行压缩。这个算法会进一步减少颜色的数量,并尽可能保持图像的质量。参数 max_colors 指定了压缩后图像中的最大颜色数量。算法会尽量选择与原始图像相似的颜色进行保留,以最大程度地保持图像的质量。而在这部分动态规划量化过程大致如下:

  1. 初始化: 首先,初始化状态数组,表示不同颜色数量下的最优颜色组合。通常,初始状态可以是一个空数组或者包含少量颜色的数组。
  2. 状态转移: 根据动态规划的思想,从初始状态开始逐步扩展,计算每个状态下的最优颜色组合。这个过程通常涉及到对每种可能的颜色组合进行评估,并根据优化准则选择最优的组合。
  3. 选择最优解: 最终,选择最优的颜色组合作为压缩后的图像的颜色集合。这个颜色集合将用于替换原始图像中的颜色,从而实现图像的压缩。
  4. 压缩数据保存: 压缩后的图像数据以及相关信息(如原始图像的尺寸、选择的颜色集合等)被保存为 NumPy 数组,并通过 np.savez_compressed() 函数保存到指定路径。

通过动态规划量化,我们能够选择一组颜色,使得压缩后的图像在尽可能减少颜色数量的情况下,仍然能够保持与原始图像相似的视觉效果。这样就实现了对图像数据的进一步压缩。

(三)压缩数据保存:

压缩后的图像数据以及相关信息(如原始图像的尺寸、聚类数、最大颜色数、聚类中心颜色等)被保存为 NumPy 数组,并通过 np.savez_compressed() 函数保存到指定路径。

(四)解压缩过程:

解压缩过程与压缩过程相反。首先加载压缩后的图像数据,然后根据聚类中心颜色替换像素颜色,最后将重构后的图像数据重塑为原始形状,并恢复图像的原始尺寸。

2.彩色图像压缩类

(一)类结构介绍

将上面所述的一个彩色图像的压缩功能整合为一个名为’ColorfulImageCompressor’的类,在这个类中有四个函数,它们的函数名称、接受参数以及介绍如下:

ColorfulImageCompressor类

  • __init__(self, n_clusters, max_colors, resize_factor=0.5): 初始化彩色图像压缩器对象。
  • compress(self, image_path, compressed_file_path): 压缩彩色图像并保存到指定路径。
  • decompress(self, compressed_file_path): 解压缩彩色图像并返回解压缩后的图像对象。
  • _dynamic_programming_quantization(self, image_array): 动态规划量化,将彩色图像颜色量化为指定数量的颜色。

(二)初始化参数

在创建一个彩色图像压缩类的时候需要传入以下三个参数,进行参数的初始化。

  • n_clusters:聚类数,用于 KMeans 算法,指定图像中的颜色数量。
  • max_colors:最大颜色数,用于动态规划量化,指定压缩后图像中的最大颜色数量。
  • resize_factor:缩放因子,用于调整图像尺寸,默认为 0.5,表示将图像尺寸缩小到原始的一半。

(三)函数介绍

(1)compress(self, image_path, compressed_file_path)
  1. 介绍:
    该函数的作用是压缩彩色图像并保存到指定路径。

  2. 参数:
    image_path:原始图像文件路径。
    compressed_file_path:压缩后的图像文件路径。

  3. 函数体:

    def compress(self, image_path, compressed_file_path):"""压缩彩色图像并保存到指定路径。参数:- image_path:原始图像文件路径。- compressed_file_path:压缩后的图像文件路径。"""# 打开图像并转换为 RGB 模式image = Image.open(image_path)image = image.convert('RGB')# 根据缩放因子调整图像大小new_size = (int(image.width * self.resize_factor), int(image.height * self.resize_factor))image = image.resize(new_size)# 将图像转换为 NumPy 数组并重塑为二维数组np_image = np.array(image)original_shape = np_image.shapenp_image = np_image.reshape(-1, 3)# 使用动态规划量化对图像进行压缩compressed_data = self._dynamic_programming_quantization(np_image)# 保存压缩后的图像数据到指定路径np.savez_compressed(compressed_file_path, np_image=compressed_data['np_image'], original_shape=original_shape, n_clusters=self.n_clusters, max_colors=self.max_colors, center_colors=compressed_data['center_colors'])
(2)decompress(self, compressed_file_path)
  1. 介绍:
    解压缩彩色图像并返回解压缩后的图像对象。
  2. 参数:
    compressed_file_path:压缩后的图像文件路径。
    返回:
    reconstructed_image:解压缩后的图像对象。
  3. 函数体:
    def decompress(self, compressed_file_path):"""解压缩彩色图像并返回解压缩后的图像对象。参数:- compressed_file_path:压缩后的图像文件路径。返回:- reconstructed_image:解压缩后的图像对象。"""# 加载压缩后的图像数据compressed_data = np.load(compressed_file_path)np_image = compressed_data['np_image'].reshape(-1, 3)center_colors = compressed_data['center_colors']# 根据聚类中心替换像素颜色for i in range(self.n_clusters):np_image[np_image[:, 0] == i] = center_colors[i]# 将重构后的图像数据重塑为原始形状original_shape = compressed_data['original_shape']reconstructed_image = np_image.reshape(*original_shape).astype('uint8')reconstructed_image = Image.fromarray(reconstructed_image, 'RGB')# 恢复图像原始尺寸original_size = (int(reconstructed_image.width / self.resize_factor), int(reconstructed_image.height / self.resize_factor))reconstructed_image = reconstructed_image.resize(original_size)return reconstructed_image
(3)_dynamic_programming_quantization(self, image_array)
  1. 介绍:
    动态规划量化,将彩色图像颜色量化为指定数量的颜色。
  2. 参数:
    image_array:图像数据的 NumPy 数组表示。
    返回:
    compressed_data:包含压缩后图像数据及相关信息的字典。
  3. 函数体:
    def _dynamic_programming_quantization(self, image_array):"""动态规划量化,将彩色图像颜色量化为指定数量的颜色。参数:- image_array:图像数据的 NumPy 数组表示。返回:- compressed_data:包含压缩后图像数据及相关信息的字典。"""# 使用 KMeans 进行聚类kmeans = KMeans(n_clusters=self.n_clusters)labels = kmeans.fit_predict(image_array)quantized_image = np.zeros_like(image_array)# 遍历每个聚类簇for i in range(self.n_clusters):# 获取当前簇的像素颜色及其出现次数cluster_pixels = image_array[labels == i]unique_colors, color_counts = np.unique(cluster_pixels, axis=0, return_counts=True)# 选取出现次数最多的前 max_colors 个颜色作为量化后的颜色color_indices = np.argsort(color_counts)[::-1][:self.max_colors]quantized_colors = unique_colors[color_indices]# 计算聚类中像素与量化后颜色的距离distances = np.linalg.norm(cluster_pixels[:, None] - quantized_colors, axis=2)quantized_indices = np.argmin(distances, axis=1)# 使用量化后颜色替换聚类中的像素颜色quantized_image[labels == i] = quantized_colors[quantized_indices]# 存储聚类中心颜色center_colors = kmeans.cluster_centers_.astype('uint8')return {'np_image': quantized_image, 'n_clusters': self.n_clusters, 'max_colors': self.max_colors, 'center_colors': center_colors}

(四)使用说明

# 创建压缩器对象  
compressor = ColorfulImageCompressor(n_clusters=4, max_colors=2, resize_factor=0.5)  # 压缩彩色图像  
image_path = "./img/image2.jpg"  
compressed_file_path = "./npz/compressed_image2_n4_c2.npz"  
compressor.compress(image_path, compressed_file_path)  # 解压缩图像并显示  
reconstructed_image = compressor.decompress(compressed_file_path)  
reconstructed_image.show()  
reconstructed_image.save("./img/reconstructed_image2_n4_c2.jpg")  

3.测试结果

测试图片我们使用的采用的一张818*818分辨率,大小为79.49KB的彩色图片。分别使用不同的聚类数量和颜色数量来进行测试。

descriptiondescription
原始图片聚类数为8,颜色为2的压缩图片

详细运行数据如下表(下面文件名中的n为聚类数,而c为颜色数):

文件名原始大小(KB)压缩后的中间文件大小(KB)解压缩后的图片大小 (KB)
reconstructed_image2_n4_c279.4929.541.7
reconstructed_image2_n4_c479.4949.345.2
reconstructed_image2_n4_c879.4970.951.3
reconstructed_image2_n4_c1679.4994.359.3
reconstructed_image2_n8_c279.4948.348.7
reconstructed_image2_n8_c479.4973.352.5
reconstructed_image2_n8_c879.4910159.1
reconstructed_image2_n8_c1679.4912561.1

结束语

如果有疑问欢迎大家留言讨论,你如果觉得这篇文章对你有帮助可以给我一个免费的赞吗?你们的认可是我最大的分享动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1474372.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

ComfyUI预处理器ControlNet简单介绍与使用(附件工作流)

简介 ControlNet 是一个很强的插件,提供了很多种图片的控制方式,有的可以控制画面的结构,有的可以控制人物的姿势,还有的可以控制图片的画风,这对于提高AI绘画的质量特别有用。接下来就演示几种热门常用的控制方式 1…

基于Hadoop平台的电信客服数据的处理与分析④项目实现:任务16:数据采集/消费/存储

任务描述 “数据生产”的程序启动后,会持续向callLog.csv文件中写入模拟的通话记录。接下来,我们需要将这些实时的数据通过Flume采集到Kafka集群中,然后提供给HBase消费。Flume:是Cloudera提供的一个高可用的,高可靠的…

期末考试结束,老师该如何私发成绩?

随着期末考试的落幕,校园里又恢复了往日的宁静。然而,对于老师们来说,这并不意味着工作的结束,相反,一系列繁琐的任务才刚刚开始。 成绩单的发放,就是其中一项让人头疼的工作。家长们焦急地等待着孩子的考试…

利用pg_rman进行备份与恢复操作

文章目录 pg_rman简介一、安装配置pg_rman二、创建表与用户三、备份与恢复 pg_rman简介 pg_rman 是 PostgreSQL 的在线备份和恢复工具。类似oracle 的 rman pg_rman 项目的目标是提供一种与 pg_dump 一样简单的在线备份和 PITR 方法。此外,它还为每个数据库集群维护…

kubernetes集群部署:node节点部署和cri-docker运行时安装(四)

安装前准备 同《kubernetes集群部署:环境准备及master节点部署(二)》 安装cri-docker 在 Kubernetes 1.20 版本之前,Docker 是 Kubernetes 默认的容器运行时。然而,Kubernetes 社区决定在 Kubernetes 1.20 及以后的…

cs231n作业1——SVM

参考文章:cs231n assignment1——SVM SVM 训练阶段,我们的目的是为了得到合适的 𝑊 和 𝑏 ,为实现这一目的,我们需要引进损失函数,然后再通过梯度下降来训练模型。 def svm_loss_naive(W, …

vCenter登录失败报500错误:no healthy upstream

过了个周末登录vCenter的时候提示:HTTP状态500 - 内部服务器错误;重启服务后提示:no healthy upstream。如下图: 看到这个情况,肯定就是部分不服务异常了或者压根就没有启动。至于说因为啥异常还不得而知。想着登录管理…

无人机人员搜救

人员搜救-水域救援 水域搜救:快速水面搜查 物资抛投:救生物资抛投 绳索牵引:牵引救援绳索 领航船艇:水面侦察领航 人员搜救 昼夜搜救,精准定位 水域搜救 经纬 M300 RTK 搭载禅思 H20T 能够满足全天候作业需求&a…

开关电源——调制模式和工作模式

一、开关电源的调制模式 开关电源作为一种广泛应用于电子设备中,用于将一定电压和电流转换为另一种电压和电流的技术,以下是开关电源三种常见的调制模式: 脉冲宽度调制(Pulse Width Modulation) 脉冲频率调制&#xff…

Transformer神经网络回归预测的MATLAB实现

Transformer神经网络最初是为自然语言处理(NLP)任务设计的,但它们也可以成功应用于其他序列数据的处理,如时间序列预测和回归任务。 在回归预测中使用Transformer网络通常涉及以下关键步骤和概念: 1. Transformer架…

pycharm无法添加python解释器的解决方法

出现该错误的原因是先前创建过重名的解释器(虚拟环境),在pycharm配置中没有完全删除干净。解决方法如下: 首先在文件->设置界面,找到解释器设置。 然后先按图所示点击全部显示虚拟环境: 接着将无法添…

OpenCV教程02:图像处理系统1.0(翻转+形态学+滤波+缩放+旋转)

-------------OpenCV教程集合------------- Python教程99:一起来初识OpenCV(一个跨平台的计算机视觉库) OpenCV教程01:图像的操作(读取显示保存属性获取和修改像素值) OpenCV教程02:图像处理…

数字化精益生产系统--QMS质量管理系统

QMS质量管理系统(Quality Management System)是现代企业管理的关键组成部分,旨在确保产品和服务的质量达到或超过客户需求和期望。 以下是对QMS质量管理系统的功能设计:

运维系列.Nginx配置文件结构功能总结

运维系列 Nginx配置文件结构功能总结 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_285…

塑造卓越企业家IP:多维度视角下的策略解析

在构建和塑造企业家IP的过程中,我们需要从多个维度进行考量,以确保个人品牌能够全面、立体地展现企业家的独特魅力和价值。以下是从不同角度探讨如何做好一个企业家IP的策略。 一、从个人特质出发 深入了解自我:企业家需要清晰地认识到自己的…

Linux 系统管理 03——安装及管理程序

一、rpm 包安装 1、RPM Package Manger 由 Red Hat 公司提供,被众多 Linux 发行版本所采用。 建立统一的数据库文件,详细记录软件包安装、卸载等变化信息,能够自动分析软件包 依赖关系。 2、RPM 软件包 一般命名格式 3、查询已安装的 RP…

电路基础知识汇总

1.0 串连,并联,混连 串联的定义 电路串联是一种电路元件的连接方式,其中各个元件沿着单一路径互相连接,形成一个连续的链。在串联电路中,每个节点最多只连接两个元件,这意味着电流只有一条路径可以通过整个…

昇思25天学习打卡营第十一天|DCGAN生成漫画头像

练习营进入第11天了,今天学习的内容是DCGAN生成漫画头像,记录一下学习内容: GAN基础原理 这部分原理介绍参考GAN图像生成。 DCGAN原理 DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adversarial Net…

Java的基础语法

叠甲:以下文章主要是依靠我的实际编码学习中总结出来的经验之谈,求逻辑自洽,不能百分百保证正确,有错误、未定义、不合适的内容请尽情指出! 文章目录 1.第一份程序1.1.代码编写1.2.代码运行1.2.1.命令行编译1.2.2.IEDA…