【算法分析与设计】回溯法(上)

目录

  • 一、学习要点
    • 1.1 回溯法
    • 1.2 问题的解空间
    • 1.3 0-1背包问题的解空间
    • 1.4 旅行售货员问题的解空间
    • 1.5 生成问题状态的基本方法
  • 二、回溯法的基本思想
  • 三、回溯算法的适用条件
  • 四、递归回溯
  • 五、迭代回溯
  • 六、子集树与排列树
  • 七、装载问题
  • 八、批处理作业调度问题


一、学习要点

  理解回溯法的深度优先搜索策略。
  掌握用回溯法解题的算法框架
  (1)递归回溯
  (2)迭代回溯
  (3)子集树算法框架
  (4)排列树算法框架

  通过应用范例学习回溯法的设计策略。
  (1)装载问题;
  (2)批处理作业调度;
  (3)符号三角形问题
  (4)n后问题;
  (5)0-1背包问题;
  (6)最大团问题;
  (7)图的m着色问题
  (8)旅行售货员问题
  (9)圆排列问题
  (10)电路板排列问题
  (11)连续邮资问题


1.1 回溯法

  有许多问题,当需要找出它的解集或者要求回答什么解是满足某些约束条件的最佳解时,往往要使用回溯法
  回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。这种方法 适用于解一些组合数相当大的问题
  回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯否则,进入该子树,继续按深度优先策略搜索


1.2 问题的解空间

  问题的解向量:回溯法希望一个问题的解能够表示成一个n元式(x1,x2,…,xn)的形式。
  显约束对分量xi的取值限定
  隐约束为满足问题的解而对不同分量之间施加的约束
  解空间:对于问题的一个实例,解向量满足显式约束条件的所有多元组,构成了该实例的一个解空间

  注意:同一个问题可以有多种表示,有些表示方法更简单,所需表示的状态空间更小(存储量少,搜索方法简单)。
  n=3时的0-1背包问题用完全二叉树表示的解空间:
在这里插入图片描述


1.3 0-1背包问题的解空间

  问题的解空间应该至少包含问题的一个(最优)解
  对于n种可选择物品的0-1背包问题,其解空间由长度为n的0-1向量组成
  当n=3时,其解空间为{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}
  解空间其实就是解的集合


1.4 旅行售货员问题的解空间

  问题:某售货员要到若干城市去推销商品,已知各城市之间的路程(旅费)。他要选择一条从驻地出发,经过每个城市一遍,然后回到驻地的路线,使总的路程(总旅费)最小。
在这里插入图片描述
在这里插入图片描述


1.5 生成问题状态的基本方法

  白结点:未被访问到的结点
  灰结点:一个自身已生成但其儿子还没有全部生成的节点称做灰结点
  黑结点:一个所有儿子已经产生的结点称做黑结点
  深度优先的问题状态生成法:如果对一个扩展结点R,一旦产生了它的一个儿子C,就把C当做新的扩展结点。在完成对子树C(以C为根的子树)的穷尽搜索之后,将R重新变成扩展结点,继续生成R的下一个儿子(如果存在)。
  宽度优先的问题状态生成法:在一个扩展结点变成黑结点之前,它一直是扩展结点。
  回溯法为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。具有限界函数的深度优先生成法称为回溯法


二、回溯法的基本思想

  (1)针对所给问题,定义问题的解空间
  (2)确定易于搜索的解空间结构
  (3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索
  常用剪枝函数
  用约束函数在扩展结点处剪去不满足约束的子树
  用限界函数剪去得不到最优解的子树

  用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间在任何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为O(h(n))。而显式地存储整个解空间则需要O(2h(n))或O(h(n)!)内存空间。


三、回溯算法的适用条件

  在结点<x1,x2,…,xk>处P(x1,x2,…,xk)为真。即向量<x1,x2,…,xk>满足某个性质,则有P(x1,x2,…,xk+1)-> P(x1,x2,…,xk) 0<k<n。称之为多米诺性质
  ┐ P(x1,x2,…,xk) ->┐ P(x1,x2,…,xk+1) 0<k<n
  k维向量不满足约束条件,扩张向量到k+1维仍旧不满足,才可以进行回溯


四、递归回溯

  回溯法对解空间作深度优先搜索,因此,在一般情况下用递归方法实现回溯法

void backtrack (int t)
{if (t>n) output(x);elsefor (int i=f(n,t);i<=g(n,t);i++) {x[t]=h(i);if (constraint(t)&&bound(t)) backtrack(t+1);}
}

五、迭代回溯

  采用 树的非递归深度优先遍历算法,可将回溯法表示为一个非递归迭代过程

void iterativeBacktrack ()
{int t=1;while (t>0) {if (f(n,t)<=g(n,t)) for (int i=f(n,t);i<=g(n,t);i++) {x[t]=h(i);if (constraint(t)&&bound(t)) {if (solution(t)) output(x);else t++;}}else t--;}
}

六、子集树与排列树

  当所给问题是从n个元素的集合S中找出满足某种性质的子集时,相应的解空间树称为子集树(2n)。
  当所给问题是确定n个元素满足某种性质的排列时,相应的解空间树称为排列树(n!)。
在这里插入图片描述
  遍历子集树需O(2n)计算时间

void backtrack (int t)
{if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1);}
}

在这里插入图片描述
  遍历排列树需要O(n!)计算时间

void backtrack (int t)
{if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1);swap(x[t], x[i]);}
} 

七、装载问题

  有一批共n个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i的重量为wi,且在这里插入图片描述
  装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。如果有,找出一种装载方案。
  将第一艘轮船尽可能装满等价于选取全体集装箱的一个子集,使该子集中集装箱重量之和最接近。由此可知,装载问题等价于以下特殊的0-1背包问题。
在这里插入图片描述
  用回溯法设计解装载问题的O(2n)计算时间算法。在某些情况下该算法优于动态规划算法

  当n=3,c1=c2=50,且w=[10,40,40]
  如果w=[20,40,40]
  最优装载方案
  (1)首先将第一艘轮船尽可能装满
  (2)将剩余的集装箱装上第二艘轮船

  解空间:子集树
  可行性约束函数(选择当前元素):
  上界函数(不选择当前元素)
  当前载重量cw+剩余集装箱的重量r≤当前最优载重量bestw

void backtrack (int i){// 搜索第i层结点if (i > n)  // 到达叶结点更新最优解bestx,bestw;return;r -= w[i];if (cw + w[i] <= c) {// 搜索左子树x[i] = 1;cw += w[i];backtrack(i + 1);cw -= w[i];      }if (cw + r > bestw)  {x[i] = 0;  // 搜索右子树backtrack(i + 1);      }r += w[i];}

在这里插入图片描述


八、批处理作业调度问题

  n个作业{1, 2, …, n}要在两台机器上处理,每个作业必须先由机器1处理,然后再由机器2处理,机器1处理作业i所需时间为ai,机器2处理作业i所需时间为bi(1≤i≤n),批处理作业调度问题要求确定这n个作业的最优处理顺序,使得从第1个作业在机器1上处理开始,到最后一个作业在机器2上处理结束所需时间最少。
  显然,批处理作业的一个最优调度应使机器1没有空闲时间,且机器2的空闲时间最小。可以证明,存在一个最优作业调度使得在机器1和机器2上作业以相同次序完成

  例:三个作业{1, 2, 3},这三个作业在机器1上所需的处理时间为(2, 3, 2),在机器2上所需的处理时间为(1, 1, 3),则最佳调度方案是(1, 3, 2)、(3, 1, 2)和(3, 2, 1),其完成时间为8。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
  解空间:排列树

void Flowshop::Backtrack(int i)
{if (i > n) {for (int j = 1; j <= n; j++)bestx[j] = x[j];bestf = f;}elsefor (int j = i; j <= n; j++) {f1+=M[x[j]][1];f2[i]=((f2[i-1]>f1)?f2[i-1]:f1)+M[x[j]][2];f+=f2[i];if (f < bestf) {Swap(x[i], x[j]);Backtrack(i+1);Swap(x[i], x[j]);}f1- =M[x[j]][1];f- =f2[i];}
}

在这里插入图片描述

class Flowshop {friend Flow(int**, int, int []);private:void Backtrack(int i);int  **M,    // 各作业所需的处理时间*x,     // 当前作业调度*bestx,    // 当前最优作业调度*f2,    // 机器2完成处理时间f1,    // 机器1完成处理时间f,     // 完成时间和bestf,    // 当前最优值n;   // 作业数}; 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147428.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Kotlin前置检测判断check,require,requireNotNull

Kotlin前置检测判断check&#xff0c;require&#xff0c;requireNotNull &#xff08;1&#xff09;check fun main(args: Array<String>) {val b falsecheck(b) {println("check $b")}println("end") } check监测到值非真时候&#xff0c;抛出一…

【数据结构与算法】通过双向链表和HashMap实现LRU缓存 详解

这个双向链表采用的是有伪头节点和伪尾节点的 与上一篇文章中单链表的实现不同&#xff0c;区别于在实例化这个链表时就初始化了的伪头节点和伪尾节点&#xff0c;并相互指向&#xff0c;在第一次添加节点时&#xff0c;不需要再考虑空指针指向问题了。 /*** 通过链表与HashMa…

Python 无废话-基础知识元组Tuple详讲

“元组 Tuple”是一个有序、不可变的序列集合&#xff0c;元组的元素可以包含任意类型的数据&#xff0c;如整数、浮点数、字符串等&#xff0c;用()表示&#xff0c;如下示例&#xff1a; 元组特征 1) 元组中的各个元素&#xff0c;可以具有不相同的数据类型&#xff0c;如 T…

Python-Flask:编写自动化连接demo脚本:v1.0.0

主函数&#xff1a; # _*_ Coding : UTF-8 _*_ # Time : 13:14 # Author : YYZ # File : Flask # Project : Python_Project_爬虫 import jsonfrom flask import Flask,request,jsonify import sshapi Flask(__name__)# methods: 指定请求方式 接口解析参数host host_info[…

05. 机器学习入门 - 动态规划

文章目录 从一个案例开始动态规划 Hi, 你好。我是茶桁。 咱们之前的课程就给大家讲了什么是人工智能&#xff0c;也说了每个人的定义都不太一样。关于人工智能的不同观点和方法&#xff0c;其实是一个很复杂的领域&#xff0c;我们无法用一个或者两个概念确定什么是人工智能&a…

在visual studio里配置Qt插件并运行Qt工程

Qt插件&#xff0c;也叫qt-vsaddin&#xff0c;它以*.vsix后缀名结尾。从visual studio 2010版本开始&#xff0c;VS支持Qt框架的开发&#xff0c;Qt以插件方式集成到VS里。这里在visual studio 2019里配置Qt 5.14.2插件&#xff0c;并配置Qt环境。 1 下载VS2019 下载VS2019,官…

跟着顶级科研报告IPCC学绘图:温度折线/柱图/条带/双y轴

复现IPCC气候变化过程图 引言 升温条带Warming stripes&#xff08;有时称为气候条带&#xff0c;目前尚无合适且统一的中文释义&#xff09;是数据可视化图形&#xff0c;使用一系列按时间顺序排列的彩色条纹来视觉化描绘长期温度趋势。 在IPCC报告中经常使用这一方案 IPCC是…

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石④

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石④ 第十九章 驱动程序基石④19.7 工作队列19.7.1 内核函数19.7.1.1 定义 work19.7.1.2 使用 work&#xff1a;schedule_work19.7.1.3 其他函数 19.7.2 编程、上机19.7.3 内部机制19.7.3.1 Linux 2.x的工作队列创建过程19.7.3…

BASH shell脚本篇2——条件命令

这篇文章介绍下BASH shell中的条件相关的命令&#xff0c;包括&#xff1a;if, case, while, until, for, break, continue。之前有介绍过shell的其它基本命令&#xff0c;请参考&#xff1a;BASH shell脚本篇1——基本命令 1. If语句 if语句用于在顺序执行语句的流程中执行条…

八大排序(三)堆排序,计数排序,归并排序

一、堆排序 什么是堆排序&#xff1a;堆排序&#xff08;Heap Sort&#xff09;就是对直接选择排序的一种改进。此话怎讲呢&#xff1f;直接选择排序在待排序的n个数中进行n-1次比较选出最大或者最小的&#xff0c;但是在选出最大或者最小的数后&#xff0c;并没有对原来的序列…

Python无废话-办公自动化Excel修改数据

如何修改Excel 符合条件的数据&#xff1f;用Python 几行代码搞定。 需求&#xff1a;将销售明细表的产品名称为PG手机、HW手机、HW电脑的零售价格分别修改为4500、5500、7500&#xff0c;并保存Excel文件。如下图 Python 修改Excel 数据&#xff0c;常见步骤&#xff1a; 1&…

docker 基本操作

目录 一、docker 概述 二、容器 2.1容器的特性 2.2namespace的六项隔离 三、docker与虚拟机的区别 四、Docker核心概念 五、docker 基本操作命令 镜像操作 1、搜索镜像 2、获取镜像 3、查看镜像信息 ​编辑 4、查看下载的镜像文件信息 5、查看下载到本地的所有镜…

搭建智能桥梁,Amazon CodeWhisperer助您轻松编程

零&#xff1a;前言 随着时间的推移&#xff0c;人工智能技术以惊人的速度向前发展&#xff0c;正掀起着全新的编程范式革命。不仅仅局限于代码生成&#xff0c;智能编程助手等创新应用也进一步提升了开发效率和代码质量&#xff0c;极大地推动着软件开发领域的快速繁荣。 当前…

SpringCloud(一)Eureka、Nacos、Feign、Gateway

文章目录 概述微服务技术对比 Eureka服务远程调用服务提供者和消费者Eureka注册中心搭建注册中心服务注册服务发现Ribbon负载均衡负载均衡策略饥饿加载 NacosNacos与Eureka对比Nacos服务注册Nacos服务分集群存储NacosRule负载均衡服务实例权重设置环境隔离 Nacos配置管理配置热…

用于自然语言处理的 Python:理解文本数据

一、说明 Python是一种功能强大的编程语言&#xff0c;在自然语言处理&#xff08;NLP&#xff09;领域获得了极大的普及。凭借其丰富的库集&#xff0c;Python 为处理和分析文本数据提供了一个全面的生态系统。在本文中&#xff0c;我们将介绍 Python for NLP 的一些基础知识&…

2023 彩虹全新 SUP 模板,卡卡云模板修复版

2023 彩虹全新 SUP 模板&#xff0c;卡卡云模板&#xff0c;首页美化&#xff0c;登陆页美化&#xff0c;修复了 PC 端购物车页面显示不正常的问题。 使用教程 将这俩个数据库文件导入数据库&#xff1b; 其他的直接导入网站根目录覆盖就好&#xff1b; 若首页显示不正常&a…

计算机网络学习易错点(持续更新~~~)

目录 概述 1.internet和Internet的区别 2.面向连接和无连接 3.不同的T 4.传输速率和传播速率 5.传播时延和传输时延&#xff08;发送时延&#xff09; 6.语法&#xff0c;语义和同步 一.物理层 1.传输媒体与物理层 2.同步通信和异步通信 3.位同步&#xff08;比特同…

nginx多文件组织

背景&#xff1a; nginx的话&#xff0c;有时候&#xff0c;想部署多个配置&#xff0c;比如&#xff1a;使用不同的端口配置不同的web工程。 比如&#xff1a;8081部署&#xff1a;项目1的web页面。 8082部署&#xff1a;项目2的web页面。 1)nginx.conf worker_processes…

Google vs IBM vs Microsoft: 哪个在线数据分析师证书最好

Google vs IBM vs Microsoft: 哪个在线数据分析师证书最好&#xff1f; 对目前市场上前三个数据分析师证书进行审查和比较|Madison Hunter 似乎每个重要的公司都推出了自己版本的同一事物&#xff1a;专业数据分析师认证&#xff0c;旨在使您成为雇主的下一个热门商品。 随着…

7.JavaScript-vue

1 JavaScript html完成了架子&#xff0c;css做了美化&#xff0c;但是网页是死的&#xff0c;我们需要给他注入灵魂&#xff0c;所以接下来我们需要学习JavaScript&#xff0c;这门语言会让我们的页面能够和用户进行交互。 1.1 介绍 通过代码/js效果演示提供资料进行效果演…