GEO生信数据挖掘(四)数据清洗(离群值处理、低表达基因、归一化、log2处理)

检索到目标数据集后,开始数据挖掘,本文以阿尔兹海默症数据集GSE1297为例

目录

离群值处理

删除 低表达基因

函数归一化,矫正差异

数据标准化—log2处理

 完整代码


上节围绕着探针ID和基因名称做了一些清洗工作,还做了重复值检查,空值删除操作。

#查看重复值
table(duplicated(matrix$Gene.Symbol))#去掉缺失值
matrix_na = na.omit(matrix)  #基因名称为空删除
matrix_final = matrix_na[matrix_na$Gene.Symbol != "",]

离群值处理

用于处理异常值,将超出一定范围的值替换为中位数,以减少异常值对后续分析的影响。

#数据离群处理
#处理极端值
#定义向量极端值处理函数
#用于处理异常值,将超出一定范围的值替换为中位数,以减少异常值对后续分析的影响。
dljdz=function(x) {DOWNB=quantile(x,0.25)-1.5*(quantile(x,0.75)-quantile(x,0.25))UPB=quantile(x,0.75)+1.5*(quantile(x,0.75)-quantile(x,0.25))x[which(x<DOWNB)]=quantile(x,0.5)x[which(x>UPB)]=quantile(x,0.5)return(x)
}#第一列设置为行名
matrix_leave=matrix_finalboxplot(matrix_leave,outline=FALSE, notch=T, las=2)  ##出箱线图
dim(matrix_leave)#处理离群值
matrix_leave_res=apply(matrix_leave,2,dljdz)boxplot(matrix_leave_res,outline=FALSE, notch=T, las=2)  ##出箱线图
dim(matrix_leave_res)

删除 低表达基因

方案1 :仅去除在所有样本里表达量都为零的基因(或者平均值小于1)

方案2:仅保留在一半(50%,75%...自己选择)以上样本里表达的基因

#删除 低表达基因#仅去除在所有样本里表达量都为零的基因(平均值小于1)# 计算基因表达矩阵的平均值
gene_avg <- apply(matrix_final, 1, mean)
# 根据阈值筛选低表达基因
filtered_genes_1 <- matrix_final[gene_avg >= 1, ] # 表达量平均值小于1的过滤
dim(filtered_genes_1)#+================================
#常用过滤标准2(推荐):
#仅保留在一半以上样本里表达的基因# 计算基因表达矩阵每个基因的平均值
gene_means <- rowMeans(matrix_final)# 计算基因平均值的排序百分位数
gene_percentiles <- rank(gene_means) / length(gene_means)# 获取阈值
threshold <- 0.25  # 删除后25%的阈值
#threshold <- 0.5  # 删除后50%的阈值
# 根据阈值筛选低表达基因
filtered_genes_2 <- matrix_final[gene_percentiles > threshold, ]# 打印筛选后的基因表达矩阵
dim(filtered_genes_2)boxplot(filtered_genes_2,outline=FALSE, notch=T, las=2)  ##出箱线图
#dim(filtered_genes)#+删除 低表达基因   得到filtered_genes_1 删除平均表达小于1的   得到filtered_genes_2 删除后25%的

函数归一化,矫正差异


#1.归一化不是绝对必要的,但是推荐进行归一化。
#有重复的样本中,应该不具备生物学意义的外部因素会影响单个样品的表达,
#例如中第一批制备的样品会总体上表达高于第二批制备的样品,假设所有样品表达值的范围和分布都应当相似,
#需要进行归一化来确保整个实验中每个样本的表达分布都相似。
#2.归一化要在log2标准化之前做
 

library(limma) exprSet=normalizeBetweenArrays(filtered_genes_2)boxplot(exprSet,outline=FALSE, notch=T, las=2)  ##出箱线图## 这步把矩阵转换为数据框很重要
class(exprSet)   ##注释:此时数据的格式是矩阵(Matrix)
exprSet <- as.data.frame(exprSet)

数据标准化—log2处理

如果表达量的数值在50以内,通常是经过log2转化后的。如果数字在几百几千,则是未经转化的。

GSE数据集的注释部分会有说明,常见的标准化处理方法有3种:RMA算法、GC-RMA算法、MAS5算法

#标准化 表达矩阵自动log2化
qx <- as.numeric(quantile(exprSet, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T))
LogC <- (qx[5] > 100) ||(qx[6]-qx[1] > 50 && qx[2] > 0) ||(qx[2] > 0 && qx[2] < 1 && qx[4] > 1 && qx[4] < 2)## 开始判断
if (LogC) { exprSet [which(exprSet  <= 0)] <- NaN## 取log2exprSet_clean <- log2(exprSet)print("log2 transform finished")
}else{print("log2 transform not needed")
}

筛选后的基因表达矩阵的箱线图

经过数据清洗后的箱线图

 完整代码


# 安装并加载GEOquery包
library(GEOquery)# 指定GEO数据集的ID
gse_id <- "GSE1297"# 使用getGEO函数获取数据集的基础信息
gse_info <- getGEO(gse_id, destdir = ".", AnnotGPL = F ,getGPL = F) # Failed to download ./GPL96.soft.gz!# 提取基因表达矩阵
expression_data <- exprs(gse_info[[1]])# 提取注释信息
#annotation <- featureData(gse_info[[1]])#查看平台文件列名
colnames(annotation)#打印项目文件列表
dir() # 读取芯片平台文件txt
platform_file <- read.delim("GPL96-57554.txt", header = TRUE, sep = "\t", comment.char = "#")#查看平台文件列名
colnames(platform_file)# 假设芯片平台文件中有两列,一列是探针ID,一列是基因名
#probe_names <- platform_file$ID
#gene_symbols <- platform_file$Gene.Symbol
platform_file_set=platform_file[,c(1,11)]#一个探针对应多个基因名,保留第一个基因名
ids = platform_file_set
library(tidyverse)
test_function <- apply(ids,1,function(x){paste(x[1],str_split(x[2],'///',simplify=T),sep = "...")})
x = tibble(unlist(test_function))colnames(x) <- "ttt" 
ids <- separate(x,ttt,c("ID","Gene.Symbol"),sep = "\\...")
dim(ids)#将Matrix格式表达矩阵转换为data.frame格式
exprSet <- data.frame(expression_data)
dim(exprSet)#给表达矩阵新增加一列ID
exprSet$ID <- rownames(exprSet) # 得到表达矩阵,行名为ID,需要转换,新增一列
dim(exprSet)
#矩阵表达文件和平台文件有相同列‘ID’,使用merge函数合并
express <- merge(x = exprSet, y = ids, by.x = "ID")#删除探针ID列
express$ID =NULLdim(express) matrix = express
dim(matrix)
#查看多少个基因重复了
table(duplicated(matrix$Gene.Symbol))#把重复的Symbol取平均值
matrix <- aggregate(.~Gene.Symbol, matrix, mean)  ##把重复的Symbol取平均值
row.names(matrix) <- matrix$Gene.Symbol  #把行名命名为SYMBOLdim(matrix)matrix_na = na.omit(matrix)   #去掉缺失值
dim(matrix_na)matrix_final = matrix_na[matrix_na$Gene.Symbol != "",]
dim(matrix_final)matrix_final <- subset(matrix_final, select = -1)  #删除Symbol列(一般是第一列)
dim(matrix_final)
#+  经过注释、探针名基因名处理、删除基因名为空值、删除缺失值 得到最终 matrix_final
#+==================================================================================
#+========================================================================================#+==================================================================================
#+========================================================================================
#+增加#(2)离群值处理#数据离群处理
#处理极端值
#定义向量极端值处理函数
#用于处理异常值,将超出一定范围的值替换为中位数,以减少异常值对后续分析的影响。
dljdz=function(x) {DOWNB=quantile(x,0.25)-1.5*(quantile(x,0.75)-quantile(x,0.25))UPB=quantile(x,0.75)+1.5*(quantile(x,0.75)-quantile(x,0.25))x[which(x<DOWNB)]=quantile(x,0.5)x[which(x>UPB)]=quantile(x,0.5)return(x)
}#第一列设置为行名
matrix_leave=matrix_finalboxplot(matrix_leave,outline=FALSE, notch=T, las=2)  ##出箱线图
dim(matrix_leave)#处理离群值
matrix_leave_res=apply(matrix_leave,2,dljdz)boxplot(matrix_leave_res,outline=FALSE, notch=T, las=2)  ##出箱线图
dim(matrix_leave_res)#+增加#(2)离群值处理
#+==================================================================================
#+========================================================================================#+==================================================================================
#+========================================================================================
#删除 低表达基因#仅去除在所有样本里表达量都为零的基因(平均值小于1)# 计算基因表达矩阵的平均值
gene_avg <- apply(matrix_final, 1, mean)
# 根据阈值筛选低表达基因
filtered_genes_1 <- matrix_final[gene_avg >= 1, ] # 表达量平均值小于1的过滤
dim(filtered_genes_1)#+================================
#常用过滤标准2(推荐):
#仅保留在一半以上样本里表达的基因# 计算基因表达矩阵每个基因的平均值
gene_means <- rowMeans(matrix_final)# 计算基因平均值的排序百分位数
gene_percentiles <- rank(gene_means) / length(gene_means)# 获取阈值
threshold <- 0.25  # 删除后25%的阈值
#threshold <- 0.5  # 删除后50%的阈值
# 根据阈值筛选低表达基因
filtered_genes_2 <- matrix_final[gene_percentiles > threshold, ]# 打印筛选后的基因表达矩阵
dim(filtered_genes_2)boxplot(filtered_genes_2,outline=FALSE, notch=T, las=2)  ##出箱线图
#dim(filtered_genes)#+删除 低表达基因   得到filtered_genes_1 删除平均表达小于1的   得到filtered_genes_2 删除后25%的
#+==================================================================================
#+========================================================================================#+==================================================================================
#+========================================================================================
### limma的函数归一化,矫正差异  ,表达矩阵自动log2化#1.归一化不是绝对必要的,但是推荐进行归一化。
#有重复的样本中,应该不具备生物学意义的外部因素会影响单个样品的表达,
#例如中第一批制备的样品会总体上表达高于第二批制备的样品,假设所有样品表达值的范围和分布都应当相似,
#需要进行归一化来确保整个实验中每个样本的表达分布都相似。
#2.归一化要在log2标准化之前做library(limma) exprSet=normalizeBetweenArrays(filtered_genes_2)boxplot(exprSet,outline=FALSE, notch=T, las=2)  ##出箱线图## 这步把矩阵转换为数据框很重要
class(exprSet)   ##注释:此时数据的格式是矩阵(Matrix)
exprSet <- as.data.frame(exprSet)#标准化 表达矩阵自动log2化
qx <- as.numeric(quantile(exprSet, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T))
LogC <- (qx[5] > 100) ||(qx[6]-qx[1] > 50 && qx[2] > 0) ||(qx[2] > 0 && qx[2] < 1 && qx[4] > 1 && qx[4] < 2)## 开始判断
if (LogC) { exprSet [which(exprSet  <= 0)] <- NaN## 取log2exprSet_clean <- log2(exprSet)print("log2 transform finished")
}else{print("log2 transform not needed")
}boxplot(exprSet_clean,outline=FALSE, notch=T, las=2)  ##出箱线图
### limma的函数归一化,矫正差异  ,表达矩阵自动log2化 得到exprSet_clean
#+==================================================================================
#+========================================================================================# saving all data to the path
save(exprSet_clean, file ="exprSet_clean_75percent_filter.RData")

上述处理得到了干净的基因表达矩阵,数据部分已经没有问题,但是在做数据挖掘(差异分析、富集分析等)之前还有一项准备工作,要将数据样本进行分组,即患病组、对照组。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147097.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

酷开科技OTT大屏营销,做好价值塑造

洞察2023&#xff0c;随着技术与数据入局OTT领域&#xff0c;程序化投放、数据追踪、人群定位等等能力正逐步深入&#xff0c;围绕OTT大屏营销&#xff0c;新营销的价值也正在被重构。随着国内5G、人工智能、云计算等技术不断普及&#xff0c;大屏营销服务成为OTT行业发展的主流…

使用 Python 给 PDF 添加目录书签

0、库的选择——pypdf 原因&#xff1a;Python Version Support Python 3.11 3.10 3.9 3.8 3.7 3.6 2.7 pypdf>3.0 YES YES YES YES YES YES PyPDF2>2.0 YES YES YES YES YES YES PyPDF2 1.20.0 - 1.28.4 YES YES YES YES YES YES P…

1、【开始】【简介】Qlib:量化平台

【简介】1、Qlib:量化平台 简介框架简介 Qlib是一个面向AI的量化投资平台,旨在实现AI技术在量化投资中的潜力,赋能研究,并创造价值。 通过Qlib,用户可以轻松利用他们的想法来创建更好的量化投资策略。 框架 在模块层,Qlib 是由上述组件组成的平台。这些组件被设计为低耦…

Flutter笔记:关于应用程序中提交图片作为头像

Flutter笔记 关于应用程序中提交图片作为头像 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133418554…

多目标平衡黏菌算法(MOEOSMA)求解八个现实世界受约束的工程问题

目录 1 受约束的工程问题 1.1 减速器设计问题(Speed reducer design problem) 1.2 弹簧设计问题(Spring design problem) 1.3 静压推力轴承设计问题(Hydrostatic thrust bearing design problem) 1.4 振动平台设计问题(Vibrating platform design problem) 1.5 汽车侧面碰…

HTML——列表,表格,表单内容的讲解

文章目录 一、列表1.1无序&#xff08;unorder&#xff09;列表1.2 有序&#xff08;order&#xff09;列表1.3 定义列表 二、表格**2.1 基本的表格标签2.2 演示 三、表单3.1 form元素3.2 input元素3.2.1 单选按钮 3.3 selcet元素 基础部分点击&#xff1a; web基础 一、列表 …

做一个优秀的博士生,时间的付出是必要条件

&#xff0a;图片来自管理学季刊 时间的付出 所有成功的科学家一定具有的共同点&#xff0c;就是他们必须付出大量的时间和心血。这是一条真理。实际上&#xff0c;无论社会上哪一种职业&#xff0c;要想成为本行业中的佼佼者&#xff0c;都必须付出比常人多的时间。有时&…

数据结构——二叉树的基本概念及顺序存储(堆)

目录 一.前言 二.树概念及结构 2.1 树的概念 2.2 树的相关概念 2.3 树的表现 2.4 树在实际中的应用&#xff08;表示文件系统的目录树结构&#xff09; 三.二叉树的概念及结构 3.1 概念 3.2 特殊的二叉树 3.3 二叉树的性质 3.4 二叉树的存储结构 3.4.1 顺序存储 3…

深度学习笔记之线性代数

深度学习笔记之线性代数 一、向量 在数学表示法中&#xff0c;向量通常记为粗体小写的符号&#xff08;例如&#xff0c;x&#xff0c;y&#xff0c;z&#xff09;当向量表示数据集中的样本时&#xff0c;它们的值具有一定的现实意义。例如研究医院患者可能面临的心脏病发作风…

小谈设计模式(13)—外观模式

小谈设计模式&#xff08;13&#xff09;—外观模式 专栏介绍专栏地址专栏介绍 外观模式主要目的角色分析外观&#xff08;Facade&#xff09;角色子系统&#xff08;Subsystem&#xff09;角色客户端&#xff08;Client&#xff09;角色 工作原理核心思想总结简化接口解耦客户…

springboot和vue:九、v-for中的key+vue组件化开发

v-for中的key 目的 现在想要实现这样的一种效果&#xff0c;页面上存在初始姓名表单&#xff0c;同时存在输入框&#xff0c;输入姓名后点击添加按钮可以将新输入的姓名加入显示的姓名表单中。 代码 <!DOCTYPE html> <html lang"en"><head><…

8、Nacos服务注册服务端源码分析(七)

本文收录于专栏 Nacos 中 。 文章目录 前言确定前端路由CatalogController.listDetail()ServiceManager总结 前言 前文我们分析了Nacos中客户端注册时数据分发的设计链路&#xff0c;本文根据Nacos前端页面请求&#xff0c;看下前端页面中的服务列表的数据源于哪里。 确定前端…

【考研数学】高等数学第七模块 —— 曲线积分与曲面积分 | 3. 对面积的曲面积分(第一类曲面积分)

文章目录 二、曲面积分2.1 对面积的曲面积分&#xff08;第一类曲面积分&#xff09;2.1.1 问题引入 —— 曲面的质量2.1.2 对面积的曲面积分定义及性质2.1.3 对面积的曲面积分的计算法 写在最后 二、曲面积分 2.1 对面积的曲面积分&#xff08;第一类曲面积分&#xff09; 2…

【面试经典150 | 矩阵】螺旋矩阵

文章目录 写在前面Tag题目来源题目解读解题思路方法一&#xff1a;模拟方法二&#xff1a;按层模拟 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主&#xff0c;并附带一些对于…

C语言实例_调用SQLITE数据库完成数据增删改查

一、SQLite介绍 SQLite是一种轻量级的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;它是一个开源的、零配置的、服务器端的、自包含的、零管理的、事务性的SQL数据库引擎。它被广泛应用于嵌入式设备、移动设备和桌面应用程序等领域。 SQLite的特点包括&…

【Golang】数组 切片

【Golang】数组 && 切片 1、数组 基本概念 数组是一个由固定长度的特定类型元素组成的序列&#xff0c;一个数组可以由零个或多个元素组成 因为数组的长度是固定的&#xff0c;所以在Go语言中很少直接使用数组 数组初始化 //1、默认数组中的值是类型的默认值 var arr…

华为智能企业上网行为管理安全解决方案(2)

本文承接&#xff1a; https://blog.csdn.net/qq_37633855/article/details/133339254?spm1001.2014.3001.5501 重点讲解华为智能企业上网行为管理安全解决方案的部署流程。 华为智能企业上网行为管理安全解决方案&#xff08;2&#xff09; 课程地址方案部署整体流程组网规划…

ARM-day2

1、1到100累加 .text .global _start_start:MOV r0, #1ADD r1,r0, #1fun:ADD r0,r0,r1ADD r1,r1, #1cmp r1, #0x65moveq PC,LRbl funstop:b stop.end2、思维导图

Spring Boot的自动装配中的@ConditionalOnBean条件装配注解在Spring启动过程中,是如何保证处理顺序靠后的

前言 为什么Spring Boot条件注解那么多&#xff0c;而标题中是ConditionalOnBean呢&#xff1f; 因为&#xff0c;相比之下我们用的比较多的条件装配注解也就是ConditionalOnClass、ConditionalOnBean了&#xff0c;而ConditionalOnClass对顺序并不敏感&#xff08;说白了就是判…

uniapp app 导出excel 表格

直接复制运行 <template><view><button click"tableToExcel">导出一个表来看</button><view>{{ successTip }}</view></view> </template><script>export default {data() {return {successTip: }},metho…