【深度学习实验】卷积神经网络(六):自定义卷积神经网络模型(VGG)实现图片多分类任务

目录

一、实验介绍

二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入必要的工具包

1. 构建数据集(CIFAR10Dataset)

a. read_csv_labels()

b. CIFAR10Dataset

2. 构建模型(FeedForward)

3.整合训练、评估、预测过程(Runner)

4. __main__

预测结果

5. 代码整合


一、实验介绍

        本实验实现了一个简化版VGG网络,并基于此完成图像分类任务。
       

        VGG网络是深度卷积神经网络中的经典模型之一,由牛津大学计算机视觉组(Visual Geometry Group)提出。它在2014年的ImageNet图像分类挑战中取得了优异的成绩(分类任务第二,定位任务第一),被广泛应用于图像分类、目标检测和图像生成等任务。

        VGG网络的主要特点是使用了非常小的卷积核尺寸(通常为3x3)和更深的网络结构。该网络通过多个卷积层和池化层堆叠在一起,逐渐增加网络的深度,从而提取图像的多层次特征表示。VGG网络的基本构建块是由连续的卷积层组成,每个卷积层后面跟着一个ReLU激活函数。在每个卷积块的末尾,都会添加一个最大池化层来减小特征图的尺寸。VGG网络的这种简单而有效的结构使得它易于理解和实现,并且在不同的任务上具有很好的泛化性能。

        VGG网络有几个不同的变体,如VGG11、VGG13、VGG16和VGG19,它们的数字代表网络的层数。这些变体在网络深度和参数数量上有所区别,较深的网络通常具有更强大的表示能力,但也更加复杂。

二、实验环境

    本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

ChatGPT:

        卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、计算机视觉和模式识别等领域。它的设计灵感来自于生物学中视觉皮层的工作原理。

        卷积神经网络通过多个卷积层、池化层全连接层组成。

  • 卷积层主要用于提取图像的局部特征,通过卷积操作和激活函数的处理,可以学习到图像的特征表示。
  • 池化层则用于降低特征图的维度,减少参数数量,同时保留主要的特征信息。
  • 全连接层则用于将提取到的特征映射到不同类别的概率上,进行分类或回归任务。

        卷积神经网络在图像处理方面具有很强的优势,它能够自动学习到具有层次结构的特征表示,并且对平移、缩放和旋转等图像变换具有一定的不变性。这些特点使得卷积神经网络成为图像分类、目标检测、语义分割等任务的首选模型。除了图像处理,卷积神经网络也可以应用于其他领域,如自然语言处理和时间序列分析。通过将文本或时间序列数据转换成二维形式,可以利用卷积神经网络进行相关任务的处理。

0. 导入必要的工具包

import torch 
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image
import matplotlib.pyplot as plt
import os

1. 构建数据集(CIFAR10Dataset)

a. read_csv_labels()

        从CSV文件中读取标签信息并返回一个标签字典。

def read_csv_labels(fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))
  •  使用open函数打开指定文件名的CSV文件,并将文件对象赋值给变量f。这里使用'r'参数以只读模式打开文件。

  • 使用文件对象的readlines()方法读取文件的所有行,并将结果存储在名为lines的列表中。通过切片操作[1:],跳过了文件的第一行(列名),将剩余的行存储在lines列表中。

  • 列表推导式(list comprehension):对lines列表中的每一行进行处理。对于每一行,使用rstrip()方法去除行末尾的换行符,并使用split(',')方法将行按逗号分割为多个标记。最终,将所有行的标记组成的子列表存储在tokens列表中。

  • 使用字典推导式(dictionary comprehension)将tokens列表中的子列表转换为字典。对于tokens中的每个子列表,将子列表的第一个元素作为键(name),第二个元素作为值(label),最终返回一个包含这些键值对的字典。

b. CIFAR10Dataset

class CIFAR10Dataset(Dataset):def __init__(self, folder_path, fname):self.labels = read_csv_labels(os.path.join(folder_path, fname))self.folder_path = os.path.join(folder_path, 'train')def __len__(self):return len(self.labels)def __getitem__(self, idx):img = read_image(self.folder_path + '/' + str(idx + 1) + '.png')label = self.labels[str(idx + 1)]return img, torch.tensor(int(label))
  • 构造函数:

    • 接受两个参数

      • folder_path表示数据集所在的文件夹路径

      • fname表示包含标签信息的文件名。

    • 调用read_csv_labels函数,传递folder_pathfname作为参数,以读取CSV文件中的标签信息,并将返回的标签字典存储在self.labels变量中。

    • 通过拼接folder_path和字符串'train'来构建数据集的文件夹路径,将结果存储在self.folder_path变量中。

  • def __len__(self)

    • 这是CIFAR10Dataset类的方法,用于返回数据集的长度,即样本的数量。

  • def __getitem__(self, idx): 这是CIFAR10Dataset类的方法,用于根据给定的索引idx获取数据集中的一个样本。它首先根据索引idx构建图像文件的路径,并调用read_image函数来读取图像数据,将结果存储在img变量中。然后,它通过将索引转换为字符串,并使用该字符串作为键来从self.labels字典中获取相应的标签,将结果存储在label变量中。最后,它返回一个元组,包含图像数据和经过torch.tensor转换的标签。

2. 构建模型(FeedForward)

        参考前文:

【深度学习实验】卷积神经网络(五):深度卷积神经网络经典模型——VGG网络(卷积层、池化层、全连接层)_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/133350927?spm=1001.2014.3001.5501

#  每个卷积块由Conv2d卷积 + BatchNorm2d(批量标准化处理) + ReLU激活层组成
def conv_layer(chann_in, chann_out, k_size, p_size):layer = nn.Sequential(nn.Conv2d(chann_in, chann_out, kernel_size=k_size, padding=p_size),nn.BatchNorm2d(chann_out),nn.ReLU())return layer# vgg卷积模块是由几个相同的卷积块以及最大池化组成
def vgg_conv_block(in_list, out_list, k_list, p_list, pooling_k, pooling_s):layers = [conv_layer(in_list[i], out_list[i], k_list[i], p_list[i]) for i in range(len(in_list)) ]layers += [nn.MaxPool2d(kernel_size = pooling_k, stride = pooling_s)]return nn.Sequential(*layers)# vgg全连接层由Linear + BatchNorm1d + ReLU组成
def vgg_fc_layer(size_in, size_out):layer = nn.Sequential(nn.Linear(size_in, size_out),nn.BatchNorm1d(size_out),nn.ReLU())return layer# 为了简化,我们少使用了几层卷积层,方便大家使用
class VGG_S(nn.Module):def __init__ (self, num_classes):super().__init__()self.layer1 = vgg_conv_block([3,64], [64,64], [3,3], [1,1], 2, 2)   self.layer2 = vgg_conv_block([64,128], [128,128], [3,3], [1,1], 2, 2)self.layer3 = vgg_conv_block([128,256,256], [256,256,256], [3,3,3], [1,1,1], 2, 2)# 全连接层self.layer4 = vgg_fc_layer(4096, 1024)# Final layerself.layer5 = nn.Linear(1024, num_classes)def forward(self, x):out = self.layer1(x)out = self.layer2(out)vgg16_features = self.layer3(out)out = vgg16_features.view(out.size(0), -1)out = self.layer4(out)out = self.layer5(out)return out

3.整合训练、评估、预测过程(Runner)

        参考前文:

【深度学习实验】前馈神经网络(九):整合训练、评估、预测过程(Runner)_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/133219448?spm=1001.2014.3001.5501

        (略有改动:)

class Runner(object):def __init__(self, model, optimizer, loss_fn, metric=None):self.model = modelself.optimizer = optimizerself.loss_fn = loss_fn# 用于计算评价指标self.metric = metric# 记录训练过程中的评价指标变化self.dev_scores = []# 记录训练过程中的损失变化self.train_epoch_losses = []self.dev_losses = []# 记录全局最优评价指标self.best_score = 0# 模型训练阶段def train(self, train_loader, dev_loader=None, **kwargs):# 将模型设置为训练模式,此时模型的参数会被更新self.model.train()num_epochs = kwargs.get('num_epochs', 0)log_steps = kwargs.get('log_steps', 100)save_path = kwargs.get('save_path','best_model.pth')eval_steps = kwargs.get('eval_steps', 0)# 运行的step数,不等于epoch数global_step = 0if eval_steps:if dev_loader is None:raise RuntimeError('Error: dev_loader can not be None!')if self.metric is None:raise RuntimeError('Error: Metric can not be None')# 遍历训练的轮数for epoch in range(num_epochs):total_loss = 0# 遍历数据集for step, data in enumerate(train_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long())total_loss += lossif step%log_steps == 0:print(f'loss:{loss.item():.5f}')loss.backward()self.optimizer.step()self.optimizer.zero_grad()# 每隔一定轮次进行一次验证,由eval_steps参数控制,可以采用不同的验证判断条件if eval_steps != 0 :if (epoch+1) % eval_steps ==  0:dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)print(f'[Evalute] dev score:{dev_score:.5f}, dev loss:{dev_loss:.5f}')if dev_score > self.best_score:self.save_model(f'model_{epoch+1}.pth')print(f'[Evaluate]best accuracy performance has been updated: {self.best_score:.5f}-->{dev_score:.5f}')self.best_score = dev_score# 验证过程结束后,请记住将模型调回训练模式   self.model.train()global_step += 1# 保存当前轮次训练损失的累计值train_loss = (total_loss/len(train_loader)).item()self.train_epoch_losses.append((global_step,train_loss))self.save_model(f'{save_path}.pth')   print('[Train] Train done')# 模型评价阶段def evaluate(self, dev_loader, **kwargs):assert self.metric is not None# 将模型设置为验证模式,此模式下,模型的参数不会更新self.model.eval()global_step = kwargs.get('global_step',-1)total_loss = 0self.metric.reset()for batch_id, data in enumerate(dev_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long()).item()total_loss += loss self.metric.update(logits, y)dev_loss = (total_loss/len(dev_loader))self.dev_losses.append((global_step, dev_loss))dev_score = self.metric.accumulate()self.dev_scores.append(dev_score)return dev_score, dev_loss# 模型预测阶段,def predict(self, x, **kwargs):self.model.eval()logits = self.model(x)return logits# 保存模型的参数def save_model(self, save_path):torch.save(self.model.state_dict(), save_path)# 读取模型的参数def load_model(self, model_path):self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))

4. __main__

if __name__ == '__main__':batch_size = 20# 构建训练集train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')train_iter = DataLoader(train_data, batch_size=batch_size)# 构建测试集test_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')test_iter = DataLoader(test_data, batch_size=batch_size)# 模型训练num_classes = 10# 定义模型model = VGG_S(num_classes)# 定义损失函数loss_fn = F.cross_entropy# 定义优化器optimizer = torch.optim.SGD(model.parameters(), lr=0.1)runner = Runner(model, optimizer, loss_fn, metric=None)runner.train(train_iter, num_epochs=10, save_path='chapter_5')# 模型预测runner.load_model('chapter_5.pth')x, label = next(iter(test_iter))predict = torch.argmax(runner.predict(x.float()), dim=1)print('predict:', predict)print('  label:', label)

预测结果

predict: tensor([6, 1, 9, 6, 1, 1, 6, 7, 0, 3, 4, 7, 7, 1, 9, 0, 9, 5, 3, 6])label: tensor([6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6])

5. 代码整合

# 导入必要的工具包
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image
import matplotlib.pyplot as plt
import osdef read_csv_labels(fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))class CIFAR10Dataset(Dataset):def __init__(self, folder_path, fname):self.labels = read_csv_labels(os.path.join(folder_path, fname))self.folder_path = os.path.join(folder_path, 'train')def __len__(self):return len(self.labels)def __getitem__(self, idx):img = read_image(self.folder_path + '/' + str(idx + 1) + '.png')label = self.labels[str(idx + 1)]return img, torch.tensor(int(label))#  每个卷积块由Conv2d卷积 + BatchNorm2d(批量标准化处理) + ReLU激活层组成
def conv_layer(chann_in, chann_out, k_size, p_size):layer = nn.Sequential(nn.Conv2d(chann_in, chann_out, kernel_size=k_size, padding=p_size),nn.BatchNorm2d(chann_out),nn.ReLU())return layer# vgg卷积模块是由几个相同的卷积块以及最大池化组成
def vgg_conv_block(in_list, out_list, k_list, p_list, pooling_k, pooling_s):layers = [conv_layer(in_list[i], out_list[i], k_list[i], p_list[i]) for i in range(len(in_list))]layers += [nn.MaxPool2d(kernel_size=pooling_k, stride=pooling_s)]return nn.Sequential(*layers)# vgg全连接层由Linear + BatchNorm1d + ReLU组成
def vgg_fc_layer(size_in, size_out):layer = nn.Sequential(nn.Linear(size_in, size_out),nn.BatchNorm1d(size_out),nn.ReLU())return layer# 为了简化,我们少使用了几层卷积层,方便大家使用
class VGG_S(nn.Module):def __init__(self, num_classes):super().__init__()self.layer1 = vgg_conv_block([3, 64], [64, 64], [3, 3], [1, 1], 2, 2)self.layer2 = vgg_conv_block([64, 128], [128, 128], [3, 3], [1, 1], 2, 2)self.layer3 = vgg_conv_block([128, 256, 256], [256, 256, 256], [3, 3, 3], [1, 1, 1], 2, 2)# 全连接层self.layer4 = vgg_fc_layer(4096, 1024)# Final layerself.layer5 = nn.Linear(1024, num_classes)def forward(self, x):out = self.layer1(x)out = self.layer2(out)vgg16_features = self.layer3(out)out = vgg16_features.view(out.size(0), -1)out = self.layer4(out)out = self.layer5(out)return outclass Runner(object):def __init__(self, model, optimizer, loss_fn, metric=None):self.model = modelself.optimizer = optimizerself.loss_fn = loss_fn# 用于计算评价指标self.metric = metric# 记录训练过程中的评价指标变化self.dev_scores = []# 记录训练过程中的损失变化self.train_epoch_losses = []self.dev_losses = []# 记录全局最优评价指标self.best_score = 0# 模型训练阶段def train(self, train_loader, dev_loader=None, **kwargs):# 将模型设置为训练模式,此时模型的参数会被更新self.model.train()num_epochs = kwargs.get('num_epochs', 0)log_steps = kwargs.get('log_steps', 100)save_path = kwargs.get('save_path', 'best_model.pth')eval_steps = kwargs.get('eval_steps', 0)# 运行的step数,不等于epoch数global_step = 0if eval_steps:if dev_loader is None:raise RuntimeError('Error: dev_loader can not be None!')if self.metric is None:raise RuntimeError('Error: Metric can not be None')# 遍历训练的轮数for epoch in range(num_epochs):total_loss = 0# 遍历数据集for step, data in enumerate(train_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long())total_loss += lossif step % log_steps == 0:print(f'loss:{loss.item():.5f}')loss.backward()self.optimizer.step()self.optimizer.zero_grad()# 每隔一定轮次进行一次验证,由eval_steps参数控制,可以采用不同的验证判断条件if eval_steps != 0:if (epoch + 1) % eval_steps == 0:dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)print(f'[Evalute] dev score:{dev_score:.5f}, dev loss:{dev_loss:.5f}')if dev_score > self.best_score:self.save_model(f'model_{epoch + 1}.pth')print(f'[Evaluate]best accuracy performance has been updated: {self.best_score:.5f}-->{dev_score:.5f}')self.best_score = dev_score# 验证过程结束后,请记住将模型调回训练模式self.model.train()global_step += 1# 保存当前轮次训练损失的累计值train_loss = (total_loss / len(train_loader)).item()self.train_epoch_losses.append((global_step, train_loss))self.save_model(f'{save_path}.pth')print('[Train] Train done')# 模型评价阶段def evaluate(self, dev_loader, **kwargs):assert self.metric is not None# 将模型设置为验证模式,此模式下,模型的参数不会更新self.model.eval()global_step = kwargs.get('global_step', -1)total_loss = 0self.metric.reset()for batch_id, data in enumerate(dev_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long()).item()total_loss += lossself.metric.update(logits, y)dev_loss = (total_loss / len(dev_loader))self.dev_losses.append((global_step, dev_loss))dev_score = self.metric.accumulate()self.dev_scores.append(dev_score)return dev_score, dev_loss# 模型预测阶段,def predict(self, x, **kwargs):self.model.eval()logits = self.model(x)return logits# 保存模型的参数def save_model(self, save_path):torch.save(self.model.state_dict(), save_path)# 读取模型的参数def load_model(self, model_path):self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))if __name__ == '__main__':batch_size = 20# 构建训练集train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')train_iter = DataLoader(train_data, batch_size=batch_size)# 构建测试集test_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')test_iter = DataLoader(test_data, batch_size=batch_size)# 模型训练num_classes = 10# 定义模型model = VGG_S(num_classes)# 定义损失函数loss_fn = F.cross_entropy# 定义优化器optimizer = torch.optim.SGD(model.parameters(), lr=0.1)runner = Runner(model, optimizer, loss_fn, metric=None)runner.train(train_iter, num_epochs=10, save_path='chapter_5')# 模型预测runner.load_model('chapter_5.pth')x, label = next(iter(test_iter))predict = torch.argmax(runner.predict(x.float()), dim=1)print('predict:', predict)print('  label:', label)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/146635.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Unity:2D游戏设置相机orthographicSize

目录 根据设备分辨率动态设置相机 orthographicSize 根据设备分辨率动态设置相机 orthographicSize 2d游戏里面相机的Orthan.size确定的是高度,宽度是按照屏幕的宽高比计算出来的cameraWidthSize camera.Orthographic.size*(Screen.Width/Screen.height)我在游戏…

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理③

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理③ 第十八章 Linux系统对中断的处理 ③18.5 编写使用中断的按键驱动程序 ③18.5.1 编程思路18.5.1.1 设备树相关18.5.1.2 驱动代码相关 18.5.2 先编写驱动程序18.5.2.1 从设备树获得 GPIO18.5.2.2 从 GPIO获得中断号18.5…

【JVM】第三篇 JVM对象创建与内存分配机制深度剖析

目录 一. JVM对象创建过程详解1. 类加载检查2. 分配内存2.1 如何划分内存?2.2 并发问题3. 初始化4. 设置对象头5. 执行<init>方法二. 对象头和指针压缩详解三. JVM对象内存分配详解四.逃逸分析 & 栈上分配 & 标量替换详解1. 逃逸分析 & 栈上分配2. 标量替换…

查看react内置webpack版本的方法

yarn list --pattern webpack npm ls --pattern webpack

十七,IBL-打印各个Mipmap级别的hdr环境贴图

预滤波环境贴图类似于辐照度图&#xff0c;是预先计算的环境卷积贴图&#xff0c;但这次考虑了粗糙度。因为随着粗糙度的增加&#xff0c;参与环境贴图卷积的采样向量会更分散&#xff0c;导致反射更模糊&#xff0c;所以对于卷积的每个粗糙度级别&#xff0c;我们将按顺序把模…

新型信息基础设施IP追溯:保护隐私与网络安全的平衡

随着信息技术的飞速发展&#xff0c;新型信息基础设施在全球范围内日益普及&#xff0c;互联网已经成为我们社会和经济生活中不可或缺的一部分。然而&#xff0c;随着网络使用的增加&#xff0c;隐私和网络安全问题也引发了广泛关注。在这个背景下&#xff0c;IP&#xff08;In…

【C++】单例模式

文章目录 一. 介绍二. 饿汉模式三. 懒汉模式四. 饿汉模式和懒汉模式对比 一. 介绍 单例模式是属于设计模式的一种&#xff0c;那什么是设计模式呢&#xff1f; 设计模式&#xff08;Design Pattern&#xff09;是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的总…

从MVC到DDD,该如何下手重构?

作者&#xff1a;付政委 博客&#xff1a;bugstack.cn 沉淀、分享、成长&#xff0c;让自己和他人都能有所收获&#xff01;&#x1f604; 大家好&#xff0c;我是技术UP主小傅哥。多年的 DDD 应用&#xff0c;使我开了技术的眼界&#xff01; MVC 旧工程腐化严重&#xff0c;…

【嵌入式】使用MultiButton开源库驱动按键并控制多级界面切换

目录 一 背景说明 二 参考资料 三 MultiButton开源库移植 四 设计实现--驱动按键 五 设计实现--界面处理 一 背景说明 需要做一个通过不同按键控制多级界面切换以及界面动作的程序。 查阅相关资料&#xff0c;发现网上大多数的应用都比较繁琐&#xff0c;且对于多级界面的…

ahk系列——ahk_v2实现win10任意界面ocr

前言&#xff1a; 不依赖外部api接口&#xff0c;界面简洁&#xff0c;翻译快速&#xff0c;操作简单&#xff0c; 有网络就能用 、还可以把ocr结果非中文翻译成中文、同样可以识别中英日韩等60多个国家语言并翻译成中文&#xff0c;十分的nice 1、所需环境 windows10及其以上…

软件设计师_数据库系统_学习笔记

文章目录 3.1 数据库模式3.1.1 三级模式 两级映射3.1.2 数据库设计过程 3.2 ER模型3.3 关系代数与元组演算3.4 规范化理论3.5 并发控制3.6 数据库完整性约束3.7 分布式数据库3.8 数据仓库与数据挖掘 3.1 数据库模式 3.1.1 三级模式 两级映射 内模式直接与物理数据库相关联的 定…

如何初始化一个vue项目

如何初始化一个vue项目 安装 vue-cli 后 ,终端执行 vue ui npm install vue-cli --save-devCLI 服务 | Vue CLI (vuejs.org) 等一段时间后 。。。 进入项目仪表盘 设置其他模块 项目构建后目录 vue.config.js 文件相关配置 官方vue.config.js 参考文档 https://cli.vuejs.o…

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理②

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理② 第十八章 Linux系统对中断的处理 ②18.3 Linux中断系统中的重要数据结构18.3.1 irq_desc数组18.3.2 irqaction结构体18.3.3 irq_data结构体18.3.4 irq_domain结构体18.3.5 irq_chip结构体 18.4 在设备树中指定中断_在…

区块链(8):p2p去中心化之websoket服务端实现业务逻辑

1 业务逻辑 例如 peer1和peer2之间相互通信 peer1通过onopen{ write(Mesage(QUERY_LATEST))} 向peer2发送消息“我要最新的区块”。 peer2通过onMessage收到消息,通过handleMessage方法对消息进行处理。 handleMessage根据消息类型进行处理 RESPONSE_BLOCKCHAIN:返回区块链…

基于Java的游戏检索系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言用户功能已注册用户的功能后台功能管理员功能具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博…

BI神器Power Query(25)-- 使用PQ实现表格多列转换(1/3)

实例需求&#xff1a;原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中&#xff0c;att1、att3、att5为一组&#xff0c;att2、att3、att6为另一组&#xff0c;数据如下所示。 更新表格数据 原始数据表&#xff1a; Col1Col2Att1Att2Att3Att4Att5Att6AAADD…

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理①

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理 第十八章 Linux 系统对中断的处理①18.1 进程、线程、中断的核心&#xff1a;栈18.1.1 ARM 处理器程序运行的过程18.1.2 程序被中断时&#xff0c;怎么保存现场18.1.3 进程、线程的概念 18.2 Linux系统对中断处理的演进…

【教学类-36-10】20230908方脸爷爷和圆脸奶奶(midjounery-niji)(中班:《我爱我家》数:连线、涂色)

背景需求&#xff1a; 领导们鼓动我去参加上海市高级职称评审&#xff08;科研成果比较多&#xff09;&#xff0c;为下一轮保教主任评高级“探探路”。虽然自我感觉道行浅薄&#xff0c;无缘高级&#xff0c;但领导给机会&#xff0c;自然要参与一下&#xff0c;努力了解整个…

【Python】返回指定时间对应的时间戳

使用模块datetime&#xff0c;附赠一个没啥用的“时间推算”功能(获取n天后对应的时间 代码&#xff1a; import datetimedef GetTimestamp(year,month,day,hour,minute,second,*,relativeNone,timezoneNone):#返回指定时间戳。指定relative时进行时间推算"""根…

架构师习题--嵌入式习题

架构师习题--嵌入式习题 可靠度&#xff1a;是单个系统的可靠性 避错和容错 N版本程序设计是静态 恢复块是动态 恢复块是主机坏了调用备用机&#xff0c;每次只有单机运行 N版本是N机器同时运行 恢复块是主机坏了调用备用机&#xff0c;后向恢复到之前的状态 N版主直接向前走