深度学习 二:COVID 19 Cases Prediction (Regression)

Deep Learning

  • 1. 回归算法思路
  • 2. 代码
    • 2.1 基础操作
    • 2.2 定义相关函数
      • 2.3.1 定义图像绘制函数
      • 2.3.2 数据集加载及预处理
      • 2.3.3 构造数据加载器
      • 2.3.4 构建前馈神经网络(Feedforward Neural Network)模型
      • 2.3.5 神经网络的训练过程
      • 2.3.6 模型评估
      • 2.3.7 模型测试
      • 2.3.8 模型初始化
    • 2.3 模型运行

1. 回归算法思路

基于3层神经网络的回归优化

2. 代码

2.1 基础操作

切换文件路径,并创建新的文件夹:

%cd /content/drive/MyDrive
#change directory to google drive
#!mkdir ML2023
#make a directory named ML2023
%cd ./ML2023
#change directory to ML2023

/content/drive/MyDrive
/content/drive/MyDrive/ML2023

查看当前路径下的文件:

!ls

covid.test.csv covid.train.csv models

显示当前文件路径:

!pwd #output the current directory

/content/drive/MyDrive/ML2023

文件下载:

# Download Data
tr_path = 'covid.train.csv'  # path to training data
tt_path = 'covid.test.csv'   # path to testing data!gdown --id '19CCyCgJrUxtvgZF53vnctJiOJ23T5mqF' --output covid.train.csv
!gdown --id '1CE240jLm2npU-tdz81-oVKEF3T2yfT1O' --output covid.test.csv

Downloading…
From: https://drive.google.com/uc?id=19CCyCgJrUxtvgZF53vnctJiOJ23T5mqF
To: /content/covid.train.csv
100% 2.00M/2.00M [00:00<00:00, 31.7MB/s]
Downloading…
From: https://drive.google.com/uc?id=1CE240jLm2npU-tdz81-oVKEF3T2yfT1O
To: /content/covid.test.csv
100% 651k/651k [00:00<00:00, 10.2MB/s]

导入所需要的相关包:

# Import Some Packages
# PyTorch
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader# For data preprocess
import numpy as np
import csv
import os# For plotting
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure# For feature selection
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_regression

2.2 定义相关函数

2.3.1 定义图像绘制函数

def get_device():''' Get device (if GPU is available, use GPU) '''return 'cuda' if torch.cuda.is_available() else 'cpu'def plot_learning_curve(loss_record, title=''):''' Plot learning curve of your DNN (train & dev loss) dev:development'''total_steps = len(loss_record['train']) #x_1 = range(total_steps)figure(figsize=(6, 4))plt.plot(x_1, loss_record['train'], c='tab:red', label='train')if len(loss_record['dev'])!=0:x_2 = x_1[::len(loss_record['train']) // len(loss_record['dev'])] # 计算步长,保持训练集和开发集步长一致plt.plot(x_2, loss_record['dev'], c='tab:cyan', label='dev')plt.ylim(0.0, 20.0) # 设置纵坐标的范围,将其限制在0.0到20.0之间plt.xlabel('Training steps')plt.ylabel('MSE loss') # RMSE?plt.title('Learning curve of {}'.format(title))plt.legend()plt.show()# 绘制预测结果的散点图
def plot_pred(dv_set, model, device, lim=35., preds=None, targets=None):# dv_set:开发集(或验证集)的数据集,包含输入特征和实际目标值。# model:训练好的深度神经网络模型,用于进行预测。# device:指定模型在哪个设备上运行,通常是CPU或GPU。# lim:横纵坐标的限制范围,默认为35。# preds:模型的预测值(可选参数),如果未提供,则会重新计算。# targets:实际目标值(可选参数),如果未提供,则会重新获取''' Plot prediction of your DNN '''if preds is None or targets is None:model.eval()preds, targets = [], []for x, y in dv_set: # x是输入特征,y是实际目标值x, y = x.to(device), y.to(device)with torch.no_grad():pred = model(x)preds.append(pred.detach().cpu())targets.append(y.detach().cpu())preds = torch.cat(preds, dim=0).numpy()targets = torch.cat(targets, dim=0).numpy()figure(figsize=(5, 5))plt.scatter(targets, preds, c='r', alpha=0.5)plt.plot([-0.2, lim], [-0.2, lim], c='b')plt.xlim(-0.2, lim)plt.ylim(-0.2, lim)plt.xlabel('ground truth value')plt.ylabel('predicted value')plt.title('Ground Truth v.s. Prediction')plt.show()

2.3.2 数据集加载及预处理

class COVID19Dataset(Dataset):''' Dataset for loading and preprocessing the COVID19 dataset '''# target_only:一个布尔值,表示是否仅使用目标特征(在这里是最后一列)# 如果target_only为True,则只选择目标特征,否则选择一组特定的特征def __init__(self,path,mode='train',target_only=False):self.mode = mode# Read data into numpy arrayswith open(path, 'r') as fp:data = list(csv.reader(fp))data = np.array(data[1:])[:, 1:].astype(float) # 切片操作去掉第1列和行if not target_only:feats = list(range(93)) # 一共94个特征,但是需要除去最后一个特征,最后一个特征是用来预测的else:# TODO: Using 40 states & 2 tested_positive features (indices = 57 & 75)!!!# 使用硬编码feats = [40, 41, 42, 43, 57, 58, 59, 60, 61, 75, 76, 77, 78, 79] # sklean mutual infoif mode == 'test':# Testing data# data: 893 x 93 (40 states + day 1 (18) + day 2 (18) + day 3 (17))data = data[:, feats]self.data = torch.FloatTensor(data)else:# Training data (train/dev sets)# data: 2700 x 94 (40 states + day 1 (18) + day 2 (18) + day 3 (18))target = data[:, -1]data = data[:, feats]# 整个train+dev一起mean/stdself.mean = torch.FloatTensor(data).mean(dim=0, keepdim=True) # 计算张量中每列的均值# keepdim=True保持结果的维度与输入张量相同,结果将仍然是一个包含均值的张量,但它将具有与每列相同的维度self.std = torch.FloatTensor(data).std(dim=0, keepdim=True)# Splitting training data into train & dev setsif mode == 'train':indices = [i for i in range(len(data)) if i % 5 != 0]elif mode == 'dev':indices = [i for i in range(len(data)) if i % 5 == 0]# Convert data into PyTorch tensorsself.data = torch.FloatTensor(data[indices])self.target = torch.FloatTensor(target[indices])self.dim = self.data.shape[1] # 获取数据集self.data的列数,也就是特征的数量print('Finished reading the {} set of COVID19 Dataset ({} samples found, each dim = {})'.format(mode, len(self.data), self.dim))# All subclasses should overwrite __getitem__, # supporting fetching a data sample for a given key. def __getitem__(self, index):# Returns one sample at a timeif self.mode in ['train', 'dev']:# For trainingreturn self.data[index], self.target[index]else:# For testing (no target)return self.data[index]def __len__(self):# Returns the size of the datasetreturn len(self.data)def normalization(self, mean=None, std=None):# Normalize features (you may remove this part to see what will happen)# The mean and standard variance of training data will be reused to normalize testing data.if self.mode == 'train' or self.mode =='dev':mean = self.meanstd = self.stdself.data =  (self.data-mean) / stdelse:self.data =  (self.data-mean) / stdreturn mean, std

Z-Score 标准化(标准差标准化): 将数据缩放到均值为0,标准差为1的标准正态分布

  • 计算特征的均值(mean):
    μ = 1 N ∑ i = 1 N x i \mu = \frac{1}{N} \sum_{i=1}^{N} x_i μ=N1i=1Nxi

  • 计算特征的标准差(standard deviation):
    σ = 1 N ∑ i = 1 N ( x i − μ ) 2 \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} σ=N1i=1N(xiμ)2

  • 对每个数据点 x i x_i xi,应用以下标准化公式:
    z i = x i − μ σ z_i = \frac{x_i - \mu}{\sigma} zi=σxiμ

  • 数据的均值为0,即标准化后的数据集的均值接近于0。

  • 数据的标准差为1,即标准化后的数据集的标准差接近于1。

  • 数据的分布形状不会改变,只是尺度和位置发生了变化。
    Z-Score 标准化适用于许多统计和机器学习算法,特别是对于需要计算距离或涉及梯度下降等数值计算的算法。通过标准化,可以确保不同特征的尺度不会对模型的训练产生不适当的影响,帮助模型更快地收敛并提高性能。

Min-Max 标准化(最小-最大值缩放):

  • 计算特征的最小值: x min = min ⁡ ( x 1 , x 2 , … , x N ) x_{\text{min}} = \min(x_1, x_2, \ldots, x_N) xmin=min(x1,x2,,xN)

  • 计算特征的最大值: x max = max ⁡ ( x 1 , x 2 , … , x N ) x_{\text{max}} = \max(x_1, x_2, \ldots, x_N) xmax=max(x1,x2,,xN)

  • 对每个数据点 x i x_i xi,应用以下标准化公式:
    x i ′ = x i − x min x max − x min x_i' = \frac{x_i - x_{\text{min}}}{x_{\text{max}}- x_{\text{min}}} xi=xmaxxminxixmin

  • σ \sigma σ 表示标准差。

  • N N N 表示数据点的总数。

  • x i x_i xi 表示数据集中的第 i 个数据点。

  • μ \mu μ 表示数据集的均值(平均值),计算方式为: μ = 1 N ∑ i = 1 N x i \mu = \frac{1}{N} \sum_{i=1}^{N} x_i μ=N1i=1Nxi

2.3.3 构造数据加载器

构造数据加载器,用于训练、验证或测试机器学习模型。

# 定义函数可接受多个参数,包括数据文件路径path、数据集模式mode、批量大小batch_size、并行工作数n_jobs、
# 是否仅使用目标数据target_only以及均值和标准差的参数。
def prep_dataloader(path, mode, batch_size, n_jobs=0, target_only=False, mean=None, std=None):''' Generates a dataset, then is put into a dataloader. '''# Construct datasetdataset = COVID19Dataset(path, mode=mode, target_only=target_only) mean, std = dataset.normalization(mean, std)# 创建数据加载器对象:将数据集划分成小批量,并提供批量数据以供模型训练dataloader = DataLoader(dataset, batch_size,shuffle=(mode == 'train'),     # shuffle为一个布尔值,指示是否在每个周期(epoch)之前随机打乱数据。# 通常在训练模型时设置为True,确保每个周期中的样本顺序不同。drop_last=False,num_workers=n_jobs, pin_memory=True)              return dataloader, mean, std

2.3.4 构建前馈神经网络(Feedforward Neural Network)模型

在这里插入图片描述

class NeuralNet(nn.Module):''' A simple fully-connected deep neural network '''def __init__(self, input_dim):super(NeuralNet, self).__init__()# Define neural network here# TODO: How to modify this model to achieve better performance?# 定义了神经网络的结构,包括输入层、隐藏层和输出层。self.net = nn.Sequential(nn.Linear(input_dim, 64),nn.ReLU(),nn.Linear(64, 16),nn.ReLU(),nn.Linear(16,8),nn.ReLU(),nn.Linear(8,4),nn.ReLU(),nn.Linear(4,1) # 单个输出神经元的线性层,用于回归任务)# Mean squared error loss# reduction='mean':损失值会被平均计算self.criterion = nn.MSELoss(reduction='mean') def forward(self, x):''' Given input of size (batch_size x input_dim), compute output of the network '''return self.net(x).squeeze(1)def cal_loss(self, pred, target, l1_lambda):# target:真实的目标值# l1_lambda:L1正则化的超参数,用于控制正则化的强度''' Calculate loss '''# TODO: you may implement L2 regularization hereloss = self.criterion(pred, target)# L1 regularizationl1_reg = torch.tensor(0.).to(device)for param in model.parameters():l1_reg += torch.sum(torch.abs(param))loss += l1_lambda * l1_regreturn loss

2.3.5 神经网络的训练过程

  • 设置训练超参数和优化器: 代码从配置文件中获取了训练超参数,包括最大的训练周期数(n_epochs)、优化器类型(optimizer)、以及优化器的超参数(optim_hparas)。然后,通过 PyTorch 中的 getattr 函数创建了相应类型的优化器(如 Adam、SGD 等)。
  • 初始化记录器和计数器: 代码初始化了一些变量,包括损失记录器 loss_record,用于记录每个训练周期的训练和开发(验证)集损失,以及用于早停(Early Stopping)的计数器 early_stop_cnt。
  • 开始训练循环: 代码进入了一个训练循环,该循环在最大训练周期数内运行,或者在出现早停情况下提前结束训练。
  • 模型训练: 在每个训练周期内,代码设置模型为训练模式(model.train()),然后迭代训练数据集中的每个批次。
  • 验证集评估: 每个训练周期结束后,代码使用验证集(开发集)对模型进行评估,计算验证集上的均方误差。如果验证集上的均方误差小于之前的最小值(min_mse),则保存模型参数,并重置早停计数器 early_stop_cnt。这有助于防止过拟合,并在性能改善时保存模型。
  • 早停策略: 如果连续 early_stop 个训练周期内都没有性能改善(验证集损失不再降低),训练过程将提前结束。
  • 训练结束: 训练结束后,代码打印出训练周期数,然后返回最小的验证集均方误差和损失记录器 loss_record。
def train(tr_set, dv_set, model, config, device):''' DNN training '''n_epochs = config['n_epochs']  # Maximum number of epochs# Setup optimizeroptimizer = getattr(torch.optim, config['optimizer'])(model.parameters(), **config['optim_hparas'])min_mse = 1000.loss_record = {'train': [], 'dev': []}      # for recording training lossearly_stop_cnt = 0epoch = 0while epoch < n_epochs:model.train()                           # set model to training modefor x, y in tr_set:                     # iterate through the dataloaderoptimizer.zero_grad()               # set gradient to zerox, y = x.to(device), y.to(device)   # move data to device (cpu/cuda)pred = model(x)                     # forward pass (compute output)mse_loss = model.cal_loss(pred, y, config['l1_lambda'])  # compute lossmse_loss.backward()                 # compute gradient (backpropagation)optimizer.step()                    # update model with optimizerloss_record['train'].append(mse_loss.detach().cpu().item())# After each epoch, test your model on the validation (development) set.dev_mse = dev(dv_set, model, device)if dev_mse < min_mse:# Save model if your model improvedmin_mse = dev_mseprint('Saving model (epoch = {:4d}, val_loss = {:.4f})'.format(epoch + 1, min_mse))torch.save(model.state_dict(), config['save_path'])  # Save model to specified pathearly_stop_cnt = 0else:early_stop_cnt += 1epoch += 1loss_record['dev'].append(dev_mse)if early_stop_cnt > config['early_stop']:# Stop training if your model stops improving for "config['early_stop']" epochs.breakprint('Finished training after {} epochs'.format(epoch))return min_mse, loss_record

2.3.6 模型评估

def dev(dv_set, model, device):model.eval()                                # set model to evalutation modetotal_loss = 0for x, y in dv_set:                         # iterate through the dataloaderx, y = x.to(device), y.to(device)       # move data to device (cpu/cuda)with torch.no_grad():                   # disable gradient calculationpred = model(x)                     # forward pass (compute output)mse_loss = model.cal_loss(pred, y, config['l1_lambda'])  # compute losstotal_loss += mse_loss.detach().cpu().item() * len(x)  # accumulate losstotal_loss = total_loss / len(dv_set.dataset)              # compute averaged lossreturn total_loss

2.3.7 模型测试

def test(tt_set, model, device):model.eval()                                # set model to evalutation modepreds = []for x in tt_set:                            # iterate through the dataloaderx = x.to(device)                        # move data to device (cpu/cuda)with torch.no_grad():                   # disable gradient calculationpred = model(x)                     # forward pass (compute output)preds.append(pred.detach().cpu())   # collect predictionpreds = torch.cat(preds, dim=0).numpy()     # concatenate all predictions and convert to a numpy arrayreturn preds

2.3.8 模型初始化

初始化训练过程中需要的设备、目录和超参数配置,以便在训练模型之前进行必要的准备工作。

device = get_device()                 # get the current available device ('cpu' or 'cuda')
os.makedirs('models', exist_ok=True)  # The trained model will be saved to ./models/
target_only = True                   # TODO: Using 40 states & 2 tested_positive featuresseed = 459
np.random.seed(seed)
delta = np.random.normal(loc=0,scale = 0.000001)# TODO: How to tune these hyper-parameters to improve your model's performance?
config = {'n_epochs': 3000,                # maximum number of epochs'batch_size': 270,               # mini-batch size for dataloader'optimizer': 'Adam',             # optimization algorithm (optimizer in torch.optim)'optim_hparas': {                # hyper-parameters for the optimizer (depends on which optimizer you are using)'lr': 0.003,                 # learning rate of Adam#'weight_decay': 1e-8        # weight decay (L2 regularization)},'l1_lambda':1e-5 + delta,        # L1 regularization'early_stop': 200,               # early stopping epochs (the number epochs since your model's last improvement)'save_path': 'models/model.pth'  # your model will be saved here
}myseed = 42069  # set a random seed for reproducibility
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(myseed)
torch.manual_seed(myseed)
if torch.cuda.is_available():torch.cuda.manual_seed_all(myseed)

2.3 模型运行

tr_set, mean, std = prep_dataloader(tr_path, 'train', config['batch_size'], target_only=target_only)
dv_set, _, _ = prep_dataloader(tr_path, 'dev', config['batch_size'], target_only=target_only, mean=mean, std=std)
tt_set, _, _ = prep_dataloader(tt_path, 'test', config['batch_size'], target_only=target_only, mean=mean, std=std)

Finished reading the train set of COVID19 Dataset (2160 samples found, each dim = 14)
Finished reading the dev set of COVID19 Dataset (540 samples found, each dim = 14)
Finished reading the test set of COVID19 Dataset (893 samples found, each dim = 14)

model = NeuralNet(tr_set.dataset.dim).to(device)  # Construct model and move to device
model_loss, model_loss_record = train(tr_set, dv_set, model, config, device)

在这里插入图片描述

plot_learning_curve(model_loss_record, title='deep model')

在这里插入图片描述

del model
model = NeuralNet(tr_set.dataset.dim).to(device)
ckpt = torch.load(config['save_path'], map_location='cpu')  # Load your best model
model.load_state_dict(ckpt)
if len(dv_set) > 0:plot_pred(dv_set, model, device)  # Show prediction on the validation set

在这里插入图片描述

def save_pred(preds, file):''' Save predictions to specified file '''print('Saving results to {}'.format(file))with open(file, 'w') as fp:writer = csv.writer(fp)writer.writerow(['id', 'tested_positive'])for i, p in enumerate(preds):writer.writerow([i, p])preds = test(tt_set, model, device)  # predict COVID-19 cases with your model
save_pred(preds, 'COVID-19 pred.csv')  # save prediction file to COVID-19 pred.csv

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/146582.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

ECharts多个数据视图进行自适应大小的解决方案

项目场景&#xff1a; 在制作数据视图时经常会遇到多个数据视图的情况&#xff0c;在多个数据视图的情况下做自适应是比较麻烦的&#xff0c;这里就详细的分析一下该如何去制作&#xff0c;分享一下我的解决办法及思路。 定义 DOM 容器 这里需要注意一个地方&#xff0c;在定…

mac openssl 版本到底怎么回事 已解决

在mac 安装node多版本的时候&#xff0c;有可能把原有的 openssl1.1 版本 直接要再一次升级了&#xff0c;无奈的 php环境 编译器是 openssl 1.1 还是 3.0 &#xff0c;今天来个底朝天的找问题。 brew search openssl 有安装 三个版本。 但是错误提示 是第二个版本。 brew …

B058-SpringBoot

目录 springboot概念与作用入门案例springboot运行方式热部署配置文件Profile多环境支持整合测试-springboot-testSpringboot-web1.返回json数据2.返回页面&#xff08;模板技术&#xff09;thymeleaf1.导入thymeleaf依赖2.模板文件3.controller4.启动类 SSM整合1.导包2.项目目…

【动态规划】动态规划经典例题 力扣牛客

文章目录 跳台阶 BM63 简单跳台阶扩展 JZ71 简单打家结舍 LC198 中等打家劫舍2 LC213中等最长连续递增序列 LC674 简单乘积最大子数组LC152 中等最长递增子序列LC300 中等最长重复子数组LC718最长公共子串NC BM66最长公共子序列LC1143 中等完全平方数LC279零钱兑换 LC322 中等单…

QT的ui设计中改变样式表的用法

在QT的ui设计中,我们右键会弹出一个改变样式表的选项,很多人不知道这个是干什么的。 首先我们来看下具体的界面 首先我们说一下这个功能具体是干嘛的, 我们在设置很多控件在界面上之后,常常都是使用系统默认的样式,但是当有些时候为了美化界面我们需要对一些控件进行美化…

【数据结构】链表与LinkedList

作者主页&#xff1a;paper jie 的博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《JAVA数据结构》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精…

小程序编译器性能优化之路

作者 | 马可 导读 小程序编译器是百度开发者工具中的编译构建模块&#xff0c;用来将小程序代码转换成运行时代码。旧版编译器由于业务发展&#xff0c;存在编译慢、内存占用高的问题&#xff0c;我们对编译器做了一次大规模的重构&#xff0c;采用自研架构&#xff0c;做了多线…

链表经典面试题(一)

面试题 1.反转链表的题目2.反转链表的图文分析3.反转链表的代码实现 1.反转链表的题目 2.反转链表的图文分析 我们在实现反转链表的时候,是将后面的元素变前面&#xff0c;前面的元素变后面&#xff0c;那么我们是否可以理解为&#xff0c;用头插法的思想来完成反转链表呢&…

Cannot download sources:IDEA源码无法下载

问题 Swagger的相关包&#xff0c;无法看到注释&#xff1b; 在class文件的页面&#xff0c;点击下载源码&#xff0c;源码下载不了&#xff0c;IDEA报下面的错误。 报错 Cannot download sources Sources not found for: io.swagger.core.v3:swagger-annotations:2.2.9 解决…

读者写者问题—内含408真题

读者写者问题—含408 一、问题描述 一个数据问价或记录可以被多个进程共享&#xff0c;我们把只读该文件的进程称为“读者进程”&#xff0c;其他进程为“写者进程”。允许多个进程同时读一个共享对象&#xff0c;但不允许一个写者进程和其他写者进程或读者进程同时访问共享对…

点亮一个LED+LED闪烁+LED流水灯——“51单片机”

各位CSDN的uu们好呀&#xff0c;这是小雅兰的最新专栏噢&#xff0c;最近小雅兰学习了51单片机的知识&#xff0c;所以就想迫不及待地分享出来呢&#xff01;&#xff01;&#xff01;下面&#xff0c;让我们进入51单片机的世界吧&#xff01;&#xff01;&#xff01; 点亮一个…

Linux基础命令汇总

用户管理 su 切换用户&#xff1a;su 用户名 logname 显示当前用户的登录用户名&#xff1a;logname useradd 创建用户&#xff1a;useradd 用户名创建用户时指定用户的主组&#xff1a;useradd -g 组名 用户名 usermod 添加附属组&#xff1a;usermod -G 组…

2023年8月嵌入式项目开发专题总汇

一、前言 本文介绍基于嵌入式系统和C语言开发的系列项目。这些项目涵盖了多个领域&#xff0c;从自动化控制到游戏开发&#xff0c;从计算机网络到物联网应用。通过这些项目的开发过程&#xff0c;将深入探讨各种技术和解决方案&#xff0c;并分享相关经验和知识。 在本文中&…

cesium 雷达扫描 (线行扩散效果)

cesium 雷达扫描 (线行扩散效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1、 <!DOCTYPE html> <html lang="en"><head><<

分类预测 | Matlab实现BES-ELM秃鹰搜索算法优化极限学习机分类预测

分类预测 | Matlab实现BES-ELM秃鹰搜索算法优化极限学习机分类预测 目录 分类预测 | Matlab实现BES-ELM秃鹰搜索算法优化极限学习机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 Matlab实现BES-ELM秃鹰搜索算法优化极限学习机分类预测&#xff08;完整源码和数…

【CVPR 2023】DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets

文章目录 开场白效果意图 重点VoxelNet: End-to-End Learning for Point Cloud Based 3D Object DetectionX-Axis DSVT LayerY-Axis DSVT Layer Dynamic Sparse Window AttentionDynamic set partitionRotated set attention for intra-window feature propagation.Hybrid wind…

优维低代码实践:应用级配置

优维低代码技术专栏&#xff0c;是一个全新的、技术为主的专栏&#xff0c;由优维技术委员会成员执笔&#xff0c;基于优维7年低代码技术研发及运维成果&#xff0c;主要介绍低代码相关的技术原理及架构逻辑&#xff0c;目的是给广大运维人提供一个技术交流与学习的平台。 优维…

[NOIP2012 提高组] 开车旅行

[NOIP2012 提高组] 开车旅行 题目描述 小 A \text{A} A 和小 B \text{B} B 决定利用假期外出旅行&#xff0c;他们将想去的城市从 $1 $ 到 n n n 编号&#xff0c;且编号较小的城市在编号较大的城市的西边&#xff0c;已知各个城市的海拔高度互不相同&#xff0c;记城市 …

亚信科技AntDB数据库 高并发、低延迟、无死锁,深入了解AntDB-M元数据锁的实现

AntDB-M在架构上分为两层&#xff0c;服务层和存储引擎层。元数据的并发管理集中在服务层&#xff0c;数据的存储访问在存储引擎层。为了保证DDL操作与DML操作之间的一致性&#xff0c;引入了元数据锁&#xff08;MDL&#xff09;。 AntDB-M提供了丰富的元数据锁功能&#xff0…

Koa处理请求数据

在开发中&#xff0c;后端接收到请求参数后&#xff0c;需要解析参数。请求分为很多种类型&#xff0c;比如常见的get和post。 请求参数 Koa本身可以解析get请求参数&#xff0c;不能解析post请求参数。例如&#xff1a; router.get(/api/get/userInfo, async (context) >…