数据结构-哈希表

系列文章目录

1.集合-Collection-CSDN博客​​​​​​

2.集合-List集合-CSDN博客

3.集合-ArrayList源码分析(面试)_喜欢吃animal milk的博客-CSDN博客

4.数据结构-哈希表_喜欢吃animal milk的博客-CSDN博客


文章目录

目录

系列文章目录

文章目录

前言

一 . 什么是哈希表?

哈希碰撞

冲突避免

冲突解决

1.闭散列

1.1线性探测

​编辑

1.2 二元探测

2.开散列

二 . 代码实现


前言

大家好,今天给大家介绍一下哈希表相关内容以及模拟实现


一 . 什么是哈希表?

哈希表(Hash Table),也称为散列表,是一种根据关键码值(Key)而直接进行访问的数据结构。它通过将关键码值映射到表中的一个位置来访问记录,以加快查找的速度。

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(log2N),搜索的效率取决于搜索过程中元素的比较次数。

哈希表的基本思想是利用哈希函数将关键码值映射到表中的一个位置,然后在该位置上进行查找或插入操作。哈希函数将关键码值映射到表中的位置时,应该尽量避免冲突,即不同的关键码值映射到同一个位置。当两个不同的关键码值映射到同一个位置时,称为哈希冲突。

解决哈希冲突的常用方法有两种:

  1. 开放定址法:当发生冲突时,通过一定的规则找到下一个空的位置,将冲突的元素放到该位置。常见的开放定址法有线性探测法、二次探测法和双重哈希法。

  2. 链地址法:将哈希表的每个位置都设置为一个链表,当发生冲突时,将冲突的元素插入到链表中。链地址法可以处理任意数量的冲突,但是需要额外的空间来存储链表。

哈希表的优点是可以快速地进行插入、删除和查找操作,平均时间复杂度为 O(1)。但是它也有一些缺点,如哈希冲突的处理和空间的浪费等。

例如:数据集合{1,7,6,4,5,9}; 哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。


哈希碰撞

对于两个数据元素的关键字 Ki  和 Kj (i != j),有 Ki != Kj,但有:Hash(Ki ) == Hash(Kj ),即:不同关键字通过相同哈 希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

想象一下,如果在上面的哈希表中插入44 hash(44) = 44%10 = 4 这个时候该怎么解决?

还记得上面提到的解决方法吗?


冲突避免

负载因子(Load Factor)是指哈希表中已存储元素个数与哈希表大小之比。它可以用来衡量哈希表的空间利用率。

负载因子的计算公式为:负载因子 = 已存储元素个数 / 哈希表大小。

负载因子的大小会影响哈希表的性能和空间利用率。当负载因子较小时,表示哈希表中的元素较少,空间利用率较低,但是哈希表的性能可能较好,因为冲突的概率较低。当负载因子较大时,表示哈希表中的元素较多,空间利用率较高,但是哈希表的性能可能较差,因为冲突的概率较高。

通常情况下,负载因子的取值范围是 0 到 1,可以根据实际情况进行调整。一般来说,当负载因子超过某个阈值(如 0.75),就需要进行扩容操作,以保证哈希表的性能。扩容操作会重新计算哈希函数和重新分配存储空间,因此会引起一定的开销。

在实际应用中,选择合适的负载因子可以平衡哈希表的性能和空间利用率。较小的负载因子可以提高性能,但会浪费空间;较大的负载因子可以提高空间利用率,但会降低性能。因此,需要根据具体的应用场景和需求来选择合适的负载因子。


冲突解决

1.闭散列

也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以 把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

比如上面的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,下标为4,因此44理论上应该插在该 位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

1.1线性探测

从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他 元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标 记的伪删除法来删除一个元素。

1.2 二元探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨 着往后逐个去找。

二元探测步骤:

  1. 假设哈希表的大小为 capacity,哈希函数将关键码值映射到位置 pos = hash(key) % capacity。
  2. 如果位置 pos 已经被占用,即发生了哈希冲突,那么继续探测下一个位置。
  3. 下一个位置的计算公式为 pos = (pos + i^2) % capacity,其中 i 是探测的次数。
  4. 如果下一个位置仍然被占用,继续增加 i 的值,继续探测下一个位置,直到找到一个空的位置
2.开散列

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子 集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。


二 . 代码实现

案例: 使用哈希表管理员工

Emp

public class Emp {public int id;public String name;public Emp next;// 默认为空public Emp(int id,String name){super();this.id = id;this.name = name;}
}

 EmpLikedList

// 表示链表,存放数据
public class EmpLikedList {private Emp head;// 头指针,指向当前链表的第一个雇员// 添加雇员// 假定id自增长,直接尾增public void add(Emp emp){if(head == null){head = emp;return;}Emp cur = head;while(cur.next != null){cur = cur.next;}cur.next = emp;}// 遍历链表的雇员信息public void list(int count){if(head == null){System.out.println("第"+count+"条链表为空");return;}System.out.println("第"+count+"条链表的信息为");Emp cur = head;while(cur != null){if(cur.next == null){System.out.printf("(id = %d name = %s)\n",cur.id,cur.name);return;}System.out.printf("(id = %d name = %s)=>",cur.id,cur.name);cur = cur.next;}}// 通过id查找对应的雇员public Emp findEmp(int id){Emp cur = head;while(true){if(cur == null){System.out.println("雇员不存在");return null;}if(cur.id == id){return cur;}cur = cur.next;}}
}

 HashTable

// 创建 HashTable 管理多条链表
public class HashTable {// 盛放链表的数组,即哈希表EmpLikedList[] EmpLikedListArr;public int capacity;// 构造器,制定链表数量public HashTable(int capacity){this.capacity = capacity;EmpLikedListArr = new EmpLikedList[capacity];// 初始化一把,不然直接报空指针异常for (int i = 0; i < capacity; i++) {EmpLikedListArr[i] = new EmpLikedList();}}// 添加public void add(Emp emp){// 根据员工id确定员工应该在哪个链表EmpLikedListArr[HashFunction(emp.id)].add(emp);}// 遍历所有的链表public void list(){int count = 0;while (count < capacity) {EmpLikedListArr[count].list(count);count++;}}// 根据Id查找对应的雇员public void findEmp(int id){int count = HashFunction(id);Emp emp = EmpLikedListArr[count].findEmp(id);if(emp == null){System.out.println("没有找到该雇员");}else{System.out.println("找到了该雇员,在第"+count+"条链表中"+"id = "+id);}}// 散列函数 取模法public int HashFunction(int no){return no%capacity;}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/146534.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【教学类-38-02】20230724京剧脸谱2.0——竖版(小彩图 大面具)(Python 彩图彩照转素描线描稿)

结果展示 背景需求&#xff1a; 前文体运用Python颜色提取功能&#xff0c;将“京剧脸谱”彩色图片转化为线描图案。 【教学类-38】20230724京剧脸谱1.0——横版“彩图线图等大”&#xff08;Python 彩图彩照转素描线描稿&#xff09;_reasonsummer的博客-CSDN博客 存在问题&…

计算机图形学、贝塞尔曲线及绘制方法、反走样问题的解决(附完整代码)

贝塞尔曲线 1. 本次作业实现的函数及简单描述&#xff08;详细代码见后&#xff09;2. 与本次作业有关的基础知识整理3. 代码描述&#xff08;详细&#xff09;4. 完整代码5. 参考文献 &#xff08;本篇为作者学习计算机图形学时根据作业所撰写的笔记&#xff0c; 如有同课程请…

数字时代古文的传承———云南文化瑰宝“爨文化“(我为家乡发声)

文章目录 前言⭐ "爨"意味着什么&#xff0c;究竟何为"爨文化"&#xff1f;⭐ 爨文化鲜明的特点1.经济生活2.政治生活3.文化艺术 ⭐ 数字时代古文的传承与传播1.藏品数字化2.建立数据库3.传播大众化 前言 爨文化是继古滇文化之后崛起于珠江正源南盘江流域…

根据GWAS数据估算样本量N和使用千人基因组填充maf的参考文献

https://github.com/GenomicSEM/GenomicSEM/wiki/2.1-Calculating-Sum-of-Effective-Sample-Size-and-Preparing-GWAS-Summary-Statistics

【SQL】mysql创建定时任务执行存储过程--20230928

1.先设定时区 https://blog.csdn.net/m0_46629123/article/details/133382375 输入命令show variables like “%time_zone%”;&#xff08;注意分号结尾&#xff09;设置时区&#xff0c;输入 set global time_zone “8:00”; 回车,然后退出重启&#xff08;一定记得重启&am…

【C++】手撕vector(vector的模拟实现)

手撕vector目录&#xff1a; 一、基本实现思路方针 二、vector的构造函数剖析&#xff08;构造歧义拷贝构造&#xff09; 2.1构造函数使用的歧义问题 2.2 vector的拷贝构造和赋值重载&#xff08;赋值重载不是构造哦&#xff0c;为了方便写在一起&#xff09; 三、vector的…

Apollo自动驾驶系统概述(文末参与活动赠送百度周边)

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

算法基础课第二部分

算法基础课 第四讲 数学知识AcWing1381. 阶乘(同余&#xff0c;因式分解) 质数AcWing 866. 质数的判定---试除法AcWing 868. 质数的判定---埃氏筛AcWing867. 分解质因数---试除法AcWing 197. 阶乘---分解质因数---埃式筛 约数AcWing 869. 求约数---试除法AcWing 870. 约数个数-…

云可观测性安全平台——掌动智能

云可观测性安全平台是一个跨架构、跨平台的可观测性方案&#xff0c;实现对云环境下的细粒度数据可视化&#xff0c;满足安全部门对云内部安全领域的多场景诉求&#xff0c;包括敏感数据动态监管、云网攻击回溯分析、攻击横移风险监控、云异常流量分析。本文将介绍掌动智能云可…

腾讯云中使用ubuntu安装属于自己的overleaf

在自己的云服务器上安装overleaf的需求是从写论文开始的&#xff0c;总担心自己的论文放在一个网站上被泄露&#xff0c;所以想要在自己的服务器上安装自己的overleaf&#xff0c;正好手边有一个云服务器&#xff0c;现在开始。 配置腾讯云 因为使用overleaf的优势就是在不同…

SQLAlchemy常用数据类型

目录 SQLAlchemy常用数据类型 代码演示 代码分析 SQLAlchemy常用数据类型 SQLAlchemy 是一个Python的SQL工具库和对象关系映射(ORM)工具&#xff0c;它提供了一种在Python中操作数据库的高效方式。下面是SQLAlchemy中常用的一些数据类型&#xff1a; Integer&#xff1a;整形&…

【数据结构】选择排序 堆排序(二)

目录 一&#xff0c;选择排序 1&#xff0c;基本思想 2&#xff0c; 基本思路 3&#xff0c;思路实现 二&#xff0c;堆排序 1&#xff0c;直接选择排序的特性总结&#xff1a; 2&#xff0c;思路实现 3&#xff0c;源代码 最后祝大家国庆快乐&#xff01; 一&#xf…

数组和切⽚ - Go语言从入门到实战

数组和切⽚ - Go语言从入门到实战 数组的声明 package main import "fmt" func main() { var a [3]int //声明并初始化为默认零值 a[0] 1 fmt.Println("a:", a) // 输出: a: [1 0 0] b : [3]int{1, 2, 3} //声明同时初始化 fmt.Println("b:…

Python3数据科学包系列(二):数据分析实战

Python3中类的高级语法及实战 Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案 Python3数据科学包系列(一):数据分析实战 Python3数据科学包系列(二):数据分析实战 一&#xff1a;通过read_table函数读取数据创建(DataFrame)数据框 #…

C++指针的使用

文章目录 1.C指针1.1 定义指针1.2 使用指针 2.空指针和野指针2.1 空指针2.2 野指针 3.指针所占空间4.使用const修饰指针4.1 const修饰指针4.2 const修饰常量4.3 const 既修饰指针也修饰常量 5.指针操作数组6.指针做函数参数7.使用指针知识实现冒泡排序 1.C指针 指针其实就是一…

mysql主从同步

原理 概述 将主库的数据变更同步到从库&#xff0c;从而保证主库和从库数据一致 数据备份&#xff0c;失败迁移&#xff0c;读写分离&#xff0c;降低单库读写压力 原理 主数据库设置 docker run --restartalways --name mysql-master -p 3306:3306 -v /home/apps/mysql-…

偏微分方程的人工智能

9 偏微分方程的人工智能 在本节中&#xff0c;我们详细介绍了用于解决偏微分方程&#xff08;Partial Differential Equations&#xff0c;PDEs&#xff09;的人工智能领域的进展。我们在第9.1节中概述了PDE建模的一般形式&#xff0c;并阐述了在这个背景下使用机器学习方法的…

竞赛 大数据房价预测分析与可视

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 大数据房价预测分析与可视 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&#xff0c;适合…

JavaScript中如何确定this的值?如何指定this的值?

&#x1f380;JavaScript中的this 在绝大多数情况下&#xff0c;函数的调用方法决定了this的值&#xff08;运行时绑定&#xff09;。this不能在执行期间被赋值&#xff0c;并且在每次函数呗调用时this的值也可能会不同。 &#x1f37f;如何确定this的值&#xff1a; 在非严格…

百度交易中台之内容分润结算系统架构浅析

作者 | 交易中台团队 导读 随着公司内容生态的蓬勃发展&#xff0c;内容产出方和流量提供方最关注的“收益结算”的工作&#xff0c;也就成为重中之重。本文基于内容分润结算业务为入口&#xff0c;介绍了实现过程中的重难点&#xff0c;比如千万级和百万级数据量下的技术选型和…