【我的创作纪念日】使用pix2pixgan实现barts2020数据集的处理(完整版本)

使用pix2pixgan (pytorch)实现T1 -> T2的基本代码

使用 https://github.com/eriklindernoren/PyTorch-GAN/ 这里面的pix2pixgan代码进行实现。

进去之后我们需要重新处理数据集,并且源代码里面先训练的生成器,后训练鉴别器。

一般情况下,先训练判别器而后训练生成器是因为这种训练顺序在理论和实践上更加稳定和有效。我们需要改变顺序以及一些代码:

以下是一些原因:

  1. 判别器的任务相对简单:判别器的任务是将真实样本与生成样本区分开来。这相对于生成器而言是一个相对简单的分类任务,因为它只需要区分两种类型的样本。通过先训练判别器,我们可以确保其具有足够的能力来准确识别真实和生成的样本。
  2. 生成器依赖于判别器的反馈:生成器的目标是生成逼真的样本,以尽可能地欺骗判别器。通过先训练判别器,我们可以得到关于生成样本质量的反馈信息。生成器可以根据判别器的反馈进行调整,并逐渐提高生成样本的质量。
  3. 训练稳定性:在GAN的早期训练阶段,生成器产生的样本可能会非常不真实。如果首先训练生成器,那么判别器可能会很容易辨别这些低质量的生成样本,导致梯度更新不稳定。通过先训练判别器,我们可以使生成器更好地适应判别器的反馈,从而增加训练的稳定性。
  4. 避免模式崩溃:在GAN训练过程中,存在模式坍塌的问题,即生成器只学会生成少数几种样本而不是整个数据分布。通过先训练判别器,我们可以提供更多样本的多样性,帮助生成器避免陷入模式崩溃现象。

尽管先训练鉴别器再训练生成器是一种常见的做法,但并不意味着这是唯一正确的方式。根据特定的问题和数据集,有时候也可以尝试其他训练策略,例如逆向训练(先训练生成器)。选择何种顺序取决于具体情况和实验结果。

数据集使用的是BraTs2020数据集,他的介绍和处理方法在我的知识链接里面。目前使用的是个人电脑的GPU跑的。然后数据也只取了前200个训练集,并且20%分出来作为测试集。

并且我们在训练的时候,每隔一定的batch使用matplotlib将T1,生成的T1,真实的T2进行展示,并且将生成器和鉴别器的loss进行展示。

通过比较可以发现使用了逐像素的L1 LOSS可以让生成的结果更好。

在这里插入图片描述

训练10个epoch时的结果图:

在这里插入图片描述

此时的测试结果:

PSNR mean: 21.1621928375993 PSNR std: 1.1501189362634836
NMSE mean: 0.14920212 NMSE std: 0.03501928
SSIM mean: 0.5401535398016223 SSIM std: 0.019281408927679166

代码:

dataloader.py

# dataloader for fine-tuning
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets
from torchvision import transforms
from torchvision.utils import save_image
import torch.utils.data as data
import numpy as np
from PIL import ImageEnhance, Image
import random
import osdef cv_random_flip(img, label):# left right flipflip_flag = random.randint(0, 2)if flip_flag == 1:img = np.flip(img, 0).copy()label = np.flip(label, 0).copy()if flip_flag == 2:img = np.flip(img, 1).copy()label = np.flip(label, 1).copy()return img, labeldef randomCrop(image, label):border = 30image_width = image.size[0]image_height = image.size[1]crop_win_width = np.random.randint(image_width - border, image_width)crop_win_height = np.random.randint(image_height - border, image_height)random_region = ((image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,(image_height + crop_win_height) >> 1)return image.crop(random_region), label.crop(random_region)def randomRotation(image, label):rotate = random.randint(0, 1)if rotate == 1:rotate_time = random.randint(1, 3)image = np.rot90(image, rotate_time).copy()label = np.rot90(label, rotate_time).copy()return image, labeldef colorEnhance(image):bright_intensity = random.randint(7, 13) / 10.0image = ImageEnhance.Brightness(image).enhance(bright_intensity)contrast_intensity = random.randint(4, 11) / 10.0image = ImageEnhance.Contrast(image).enhance(contrast_intensity)color_intensity = random.randint(7, 13) / 10.0image = ImageEnhance.Color(image).enhance(color_intensity)sharp_intensity = random.randint(7, 13) / 10.0image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)return imagedef randomGaussian(img, mean=0.002, sigma=0.002):def gaussianNoisy(im, mean=mean, sigma=sigma):for _i in range(len(im)):im[_i] += random.gauss(mean, sigma)return imflag = random.randint(0, 3)if flag == 1:width, height = img.shapeimg = gaussianNoisy(img[:].flatten(), mean, sigma)img = img.reshape([width, height])return imgdef randomPeper(img):flag = random.randint(0, 3)if flag == 1:noiseNum = int(0.0015 * img.shape[0] * img.shape[1])for i in range(noiseNum):randX = random.randint(0, img.shape[0] - 1)randY = random.randint(0, img.shape[1] - 1)if random.randint(0, 1) == 0:img[randX, randY] = 0else:img[randX, randY] = 1return imgclass BraTS_Train_Dataset(data.Dataset):def __init__(self, source_modal, target_modal, img_size,image_root, data_rate, sort=False, argument=False, random=False):self.source = source_modalself.target = target_modalself.modal_list = ['t1', 't2']self.image_root = image_rootself.data_rate = data_rateself.images = [self.image_root + f for f in os.listdir(self.image_root) if f.endswith('.npy')]self.images.sort(key=lambda x: int(x.split(image_root)[1].split(".npy")[0]))self.img_transform = transforms.Compose([transforms.ToTensor(),transforms.Resize(img_size)])self.gt_transform = transforms.Compose([transforms.ToTensor(),transforms.Resize(img_size, Image.NEAREST)])self.sort = sortself.argument = argumentself.random = randomself.subject_num = len(self.images) // 60if self.random == True:subject = np.arange(self.subject_num)np.random.shuffle(subject)self.LUT = []for i in subject:for j in range(60):self.LUT.append(i * 60 + j)# print('slice number:', self.__len__())def __getitem__(self, index):if self.random == True:index = self.LUT[index]npy = np.load(self.images[index])img = npy[self.modal_list.index(self.source), :, :]gt = npy[self.modal_list.index(self.target), :, :]if self.argument == True:img, gt = cv_random_flip(img, gt)img, gt = randomRotation(img, gt)img = img * 255img = Image.fromarray(img.astype(np.uint8))img = colorEnhance(img)img = img.convert('L')img = self.img_transform(img)gt = self.img_transform(gt)return img, gtdef __len__(self):return int(len(self.images) * self.data_rate)def get_loader(batchsize, shuffle, pin_memory=True, source_modal='t1', target_modal='t2',img_size=256, img_root='data/train/', data_rate=0.1, num_workers=8, sort=False, argument=False,random=False):dataset = BraTS_Train_Dataset(source_modal=source_modal, target_modal=target_modal,img_size=img_size, image_root=img_root, data_rate=data_rate, sort=sort,argument=argument, random=random)data_loader = data.DataLoader(dataset=dataset, batch_size=batchsize, shuffle=shuffle,pin_memory=pin_memory, num_workers=num_workers)return data_loader# if __name__=='__main__':
#     data_loader = get_loader(batchsize=1, shuffle=True, pin_memory=True, source_modal='t1',
#                              target_modal='t2', img_size=256, num_workers=8,
#                              img_root='data/train/', data_rate=0.1, argument=True, random=False)
#     length = len(data_loader)
#     print("data_loader的长度为:", length)
#     # 将 data_loader 转换为迭代器
#     data_iter = iter(data_loader)
#
#     # 获取第一批数据
#     batch = next(data_iter)
#
#     # 打印第一批数据的大小
#     print("第一批数据的大小:", batch[0].shape)  # 输入图像的张量
#     print("第一批数据的大小:", batch[1].shape)  # 目标图像的张量
#     print(batch.shape)

models.py

import torch.nn as nn
import torch.nn.functional as F
import torchdef weights_init_normal(m):classname = m.__class__.__name__if classname.find("Conv") != -1:torch.nn.init.normal_(m.weight.data, 0.0, 0.02)elif classname.find("BatchNorm2d") != -1:torch.nn.init.normal_(m.weight.data, 1.0, 0.02)torch.nn.init.constant_(m.bias.data, 0.0)##############################
#           U-NET
##############################class UNetDown(nn.Module):def __init__(self, in_size, out_size, normalize=True, dropout=0.0):super(UNetDown, self).__init__()layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)]if normalize:layers.append(nn.InstanceNorm2d(out_size))layers.append(nn.LeakyReLU(0.2))if dropout:layers.append(nn.Dropout(dropout))self.model = nn.Sequential(*layers)def forward(self, x):return self.model(x)class UNetUp(nn.Module):def __init__(self, in_size, out_size, dropout=0.0):super(UNetUp, self).__init__()layers = [nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False),nn.InstanceNorm2d(out_size),nn.ReLU(inplace=True),]if dropout:layers.append(nn.Dropout(dropout))self.model = nn.Sequential(*layers)def forward(self, x, skip_input):x = self.model(x)x = torch.cat((x, skip_input), 1)return xclass GeneratorUNet(nn.Module):def __init__(self, in_channels=3, out_channels=3):super(GeneratorUNet, self).__init__()self.down1 = UNetDown(in_channels, 64, normalize=False)self.down2 = UNetDown(64, 128)self.down3 = UNetDown(128, 256)self.down4 = UNetDown(256, 512, dropout=0.5)self.down5 = UNetDown(512, 512, dropout=0.5)self.down6 = UNetDown(512, 512, dropout=0.5)self.down7 = UNetDown(512, 512, dropout=0.5)self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5)self.up1 = UNetUp(512, 512, dropout=0.5)self.up2 = UNetUp(1024, 512, dropout=0.5)self.up3 = UNetUp(1024, 512, dropout=0.5)self.up4 = UNetUp(1024, 512, dropout=0.5)self.up5 = UNetUp(1024, 256)self.up6 = UNetUp(512, 128)self.up7 = UNetUp(256, 64)self.final = nn.Sequential(nn.Upsample(scale_factor=2),nn.ZeroPad2d((1, 0, 1, 0)),nn.Conv2d(128, out_channels, 4, padding=1),nn.Tanh(),)def forward(self, x):# U-Net generator with skip connections from encoder to decoderd1 = self.down1(x)d2 = self.down2(d1)d3 = self.down3(d2)d4 = self.down4(d3)d5 = self.down5(d4)d6 = self.down6(d5)d7 = self.down7(d6)d8 = self.down8(d7)u1 = self.up1(d8, d7)u2 = self.up2(u1, d6)u3 = self.up3(u2, d5)u4 = self.up4(u3, d4)u5 = self.up5(u4, d3)u6 = self.up6(u5, d2)u7 = self.up7(u6, d1)return self.final(u7)##############################
#        Discriminator
##############################class Discriminator(nn.Module):def __init__(self, in_channels=3):super(Discriminator, self).__init__()def discriminator_block(in_filters, out_filters, normalization=True):"""Returns downsampling layers of each discriminator block"""layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)]if normalization:layers.append(nn.InstanceNorm2d(out_filters))layers.append(nn.LeakyReLU(0.2, inplace=True))return layersself.model = nn.Sequential(*discriminator_block(in_channels * 2, 64, normalization=False),*discriminator_block(64, 128),*discriminator_block(128, 256),*discriminator_block(256, 512),nn.ZeroPad2d((1, 0, 1, 0)),nn.Conv2d(512, 1, 4, padding=1, bias=False))def forward(self, img_A, img_B):# Concatenate image and condition image by channels to produce inputimg_input = torch.cat((img_A, img_B), 1)return self.model(img_input)

pix2pix.py

import argparse
import os
import numpy as np
import math
import itertools
import time
import datetime
import sys
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from torchvision.utils import save_imagefrom torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variablefrom models import *
from dataloader import *import torch.nn as nn
import torch.nn.functional as F
import torch
if __name__=='__main__':parser = argparse.ArgumentParser()parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")parser.add_argument("--dataset_name", type=str, default="basta2020", help="name of the dataset")parser.add_argument("--batch_size", type=int, default=2, help="size of the batches")parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")parser.add_argument("--img_height", type=int, default=256, help="size of image height")parser.add_argument("--img_width", type=int, default=256, help="size of image width")parser.add_argument("--channels", type=int, default=3, help="number of image channels")parser.add_argument("--sample_interval", type=int, default=500, help="interval between sampling of images from generators")parser.add_argument("--checkpoint_interval", type=int, default=10, help="interval between model checkpoints")opt = parser.parse_args()print(opt)os.makedirs("images/%s" % opt.dataset_name, exist_ok=True)os.makedirs("saved_models/%s" % opt.dataset_name, exist_ok=True)cuda = True if torch.cuda.is_available() else False# Loss functionscriterion_GAN = torch.nn.MSELoss()criterion_pixelwise = torch.nn.L1Loss()# Loss weight of L1 pixel-wise loss between translated image and real imagelambda_pixel = 100# Calculate output of image discriminator (PatchGAN)patch = (1, opt.img_height // 2 ** 4, opt.img_width // 2 ** 4)# Initialize generator and discriminatorgenerator = GeneratorUNet(in_channels=1, out_channels=1)discriminator = Discriminator(in_channels=1)if cuda:generator = generator.cuda()discriminator = discriminator.cuda()criterion_GAN.cuda()criterion_pixelwise.cuda()if opt.epoch != 0:# Load pretrained modelsgenerator.load_state_dict(torch.load("saved_models/%s/generator_%d.pth" % (opt.dataset_name, opt.epoch)))discriminator.load_state_dict(torch.load("saved_models/%s/discriminator_%d.pth" % (opt.dataset_name, opt.epoch)))else:# Initialize weightsgenerator.apply(weights_init_normal)discriminator.apply(weights_init_normal)# Optimizersoptimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))# Configure dataloaderstransforms_ = [transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]dataloader = get_loader(batchsize=4, shuffle=True, pin_memory=True, source_modal='t1',target_modal='t2', img_size=256, num_workers=8,img_root='data/train/', data_rate=0.1, argument=True, random=False)# dataloader = DataLoader(#     ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_),#     batch_size=opt.batch_size,#     shuffle=True,#     num_workers=opt.n_cpu,# )# val_dataloader = DataLoader(#     ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_, mode="val"),#     batch_size=10,#     shuffle=True,#     num_workers=1,# )# Tensor typeTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor# def sample_images(batches_done):#     """Saves a generated sample from the validation set"""#     imgs = next(iter(val_dataloader))#     real_A = Variable(imgs["B"].type(Tensor))#     real_B = Variable(imgs["A"].type(Tensor))#     fake_B = generator(real_A)#     img_sample = torch.cat((real_A.data, fake_B.data, real_B.data), -2)#     save_image(img_sample, "images/%s/%s.png" % (opt.dataset_name, batches_done), nrow=5, normalize=True)# ----------#  Training# ----------prev_time = time.time()# 创建空列表用于保存损失值losses_G = []losses_D = []for epoch in range(opt.epoch, opt.n_epochs):for i, batch in enumerate(dataloader):# Model inputsreal_A = Variable(batch[0].type(Tensor))real_B = Variable(batch[1].type(Tensor))# print(real_A == real_B)# Adversarial ground truthsvalid = Variable(Tensor(np.ones((real_A.size(0), *patch))), requires_grad=False)fake = Variable(Tensor(np.zeros((real_A.size(0), *patch))), requires_grad=False)# ---------------------#  Train Discriminator# ---------------------optimizer_D.zero_grad()# Real losspred_real = discriminator(real_B, real_A)loss_real = criterion_GAN(pred_real, valid)# Fake lossfake_B = generator(real_A)pred_fake = discriminator(fake_B.detach(), real_A)loss_fake = criterion_GAN(pred_fake, fake)# Total lossloss_D = 0.5 * (loss_real + loss_fake)loss_D.backward()optimizer_D.step()# ------------------#  Train Generators# ------------------optimizer_G.zero_grad()# GAN losspred_fake = discriminator(fake_B, real_A)loss_GAN = criterion_GAN(pred_fake, valid)# Pixel-wise lossloss_pixel = criterion_pixelwise(fake_B, real_B)# Total lossloss_G = loss_GAN + lambda_pixel * loss_pixel   # 希望生成的接近1loss_G.backward()optimizer_G.step()# --------------#  Log Progress# --------------# Determine approximate time leftbatches_done = epoch * len(dataloader) + ibatches_left = opt.n_epochs * len(dataloader) - batches_donetime_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))prev_time = time.time()# Print logsys.stdout.write("\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, pixel: %f, adv: %f] ETA: %s"% (epoch,opt.n_epochs,i,len(dataloader),loss_D.item(),loss_G.item(),loss_pixel.item(),loss_GAN.item(),time_left,))mat = [real_A, fake_B, real_B]if (batches_done + 1) % 200 == 0:plt.figure(dpi=400)ax = plt.subplot(131)for i, img in enumerate(mat):ax = plt.subplot(1, 3, i + 1)  #get positionimg = img.permute([0, 2, 3, 1])  # b c h w ->b h w cif img.shape[0] != 1:   # 有多个就只取第一个img = img[1]img = img.squeeze(0)   # b h w c -> h w cif img.shape[2] == 1:img = img.repeat(1, 1, 3)  # process gray imgimg = img.cpu()ax.imshow(img.data)ax.set_xticks([])ax.set_yticks([])plt.show()if (batches_done + 1) % 20 ==0:losses_G.append(loss_G.item())losses_D.append(loss_D.item())if (batches_done + 1) % 200 == 0:  # 每20个batch添加一次损失# 保存损失值plt.figure(figsize=(10, 5))plt.plot(range(int((batches_done + 1) / 20)), losses_G, label="Generator Loss")plt.plot(range(int((batches_done + 1) / 20)), losses_D, label="Discriminator Loss")plt.xlabel("Epoch")plt.ylabel("Loss")plt.title("GAN Training Loss Curve")plt.legend()plt.show()# # If at sample interval save image# if batches_done % opt.sample_interval == 0:#     sample_images(batches_done)if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0:# Save model checkpointstorch.save(generator.state_dict(), "saved_models/%s/generator_%d.pth" % (opt.dataset_name, epoch))torch.save(discriminator.state_dict(), "saved_models/%s/discriminator_%d.pth" % (opt.dataset_name, epoch))

processing.py 数据预处理

import numpy as np
from matplotlib import pylab as plt
import nibabel as nib
import random
import glob
import os
from PIL import Image
import imageiodef normalize(image, mask=None, percentile_lower=0.2, percentile_upper=99.8):if mask is None:mask = image != image[0, 0, 0]cut_off_lower = np.percentile(image[mask != 0].ravel(), percentile_lower)cut_off_upper = np.percentile(image[mask != 0].ravel(), percentile_upper)res = np.copy(image)res[(res < cut_off_lower) & (mask != 0)] = cut_off_lowerres[(res > cut_off_upper) & (mask != 0)] = cut_off_upperres = res / res.max()  # 0-1return resdef visualize(t1_data, t2_data, flair_data, t1ce_data, gt_data):plt.figure(figsize=(8, 8))plt.subplot(231)plt.imshow(t1_data[:, :], cmap='gray')plt.title('Image t1')plt.subplot(232)plt.imshow(t2_data[:, :], cmap='gray')plt.title('Image t2')plt.subplot(233)plt.imshow(flair_data[:, :], cmap='gray')plt.title('Image flair')plt.subplot(234)plt.imshow(t1ce_data[:, :], cmap='gray')plt.title('Image t1ce')plt.subplot(235)plt.imshow(gt_data[:, :])plt.title('GT')plt.show()def visualize_to_gif(t1_data, t2_data, t1ce_data, flair_data):transversal = []coronal = []sagittal = []slice_num = t1_data.shape[2]for i in range(slice_num):sagittal_plane = np.concatenate((t1_data[:, :, i], t2_data[:, :, i],t1ce_data[:, :, i], flair_data[:, :, i]), axis=1)coronal_plane = np.concatenate((t1_data[i, :, :], t2_data[i, :, :],t1ce_data[i, :, :], flair_data[i, :, :]), axis=1)transversal_plane = np.concatenate((t1_data[:, i, :], t2_data[:, i, :],t1ce_data[:, i, :], flair_data[:, i, :]), axis=1)transversal.append(transversal_plane)coronal.append(coronal_plane)sagittal.append(sagittal_plane)imageio.mimsave("./transversal_plane.gif", transversal, duration=0.01)imageio.mimsave("./coronal_plane.gif", coronal, duration=0.01)imageio.mimsave("./sagittal_plane.gif", sagittal, duration=0.01)returnif __name__ == '__main__':t1_list = sorted(glob.glob('../data/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/*/*t1.*'))t2_list = sorted(glob.glob('../data/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/*/*t2.*'))data_len = len(t1_list)train_len = int(data_len * 0.8)test_len = data_len - train_lentrain_path = '../data/train/'test_path = '../data/test/'os.makedirs(train_path, exist_ok=True)os.makedirs(test_path, exist_ok=True)for i, (t1_path, t2_path) in enumerate(zip(t1_list, t2_list)):print('preprocessing the', i + 1, 'th subject')t1_img = nib.load(t1_path)  # (240,140,155)t2_img = nib.load(t2_path)# to numpyt1_data = t1_img.get_fdata()t2_data = t2_img.get_fdata()t1_data = normalize(t1_data)  # normalize to [0,1]t2_data = normalize(t2_data)tensor = np.stack([t1_data, t2_data])  # (2, 240, 240, 155)if i < train_len:for j in range(60):Tensor = tensor[:, 10:210, 25:225, 50 + j]np.save(train_path + str(60 * i + j + 1) + '.npy', Tensor)else:for j in range(60):Tensor = tensor[:, 10:210, 25:225, 50 + j]np.save(test_path + str(60 * (i - train_len) + j + 1) + '.npy', Tensor)

testutil.py

#-*- codeing = utf-8 -*-
#@Time : 2023/9/23 0023 17:21
#@Author : Tom
#@File : testutil.py.py
#@Software : PyCharm
import argparsefrom math import log10, sqrt
import numpy as np
from skimage.metrics import structural_similarity as ssimdef psnr(res,gt):mse = np.mean((res - gt) ** 2)if(mse == 0):return 100max_pixel = 1psnr = 20 * log10(max_pixel / sqrt(mse))return psnrdef nmse(res,gt):Norm = np.linalg.norm((gt * gt),ord=2)if np.all(Norm == 0):return 0else:nmse = np.linalg.norm(((res - gt) * (res - gt)),ord=2) / Normreturn nmse

test.py

#-*- codeing = utf-8 -*-
#@Time : 2023/9/23 0023 16:14
#@Author : Tom
#@File : test.py.py
#@Software : PyCharmimport torch
from models import *
from dataloader import *
from testutil import *if __name__ == '__main__':images_save = "images_save/"slice_num = 4os.makedirs(images_save, exist_ok=True)device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = GeneratorUNet(in_channels=1, out_channels=1)data_loader = get_loader(batchsize=4, shuffle=True, pin_memory=True, source_modal='t1',target_modal='t2', img_size=256, num_workers=8,img_root='data/test/', data_rate=1, argument=True, random=False)model = model.to(device)model.load_state_dict(torch.load("saved_models/basta2020/generator_0.pth", map_location=torch.device(device)), strict=False)PSNR = []NMSE = []SSIM = []for i, (img, gt) in enumerate(data_loader):batch_size = img.size()[0]img = img.to(device, dtype=torch.float)gt = gt.to(device, dtype=torch.float)with torch.no_grad():pred = model(img)for j in range(batch_size):a = pred[j]save_image([pred[j]], images_save + str(i * batch_size + j + 1) + '.png', normalize=True)print(images_save + str(i * batch_size + j + 1) + '.png')pred, gt = pred.cpu().detach().numpy().squeeze(), gt.cpu().detach().numpy().squeeze()for j in range(batch_size):PSNR.append(psnr(pred[j], gt[j]))NMSE.append(nmse(pred[j], gt[j]))SSIM.append(ssim(pred[j], gt[j]))PSNR = np.asarray(PSNR)NMSE = np.asarray(NMSE)SSIM = np.asarray(SSIM)PSNR = PSNR.reshape(-1, slice_num)NMSE = NMSE.reshape(-1, slice_num)SSIM = SSIM.reshape(-1, slice_num)PSNR = np.mean(PSNR, axis=1)print(PSNR.size)NMSE = np.mean(NMSE, axis=1)SSIM = np.mean(SSIM, axis=1)print("PSNR mean:", np.mean(PSNR), "PSNR std:", np.std(PSNR))print("NMSE mean:", np.mean(NMSE), "NMSE std:", np.std(NMSE))print("SSIM mean:", np.mean(SSIM), "SSIM std:", np.std(SSIM))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/145736.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构之单链表

首先我们要分析为什么要链表 那么我们就要先分析顺序表的优缺点 首先我们要确定链表的结构是一个数据存放的空间&#xff0c;指向下个结点的指针域 然后我们实现打印和创建新的节点 然后我们实现头插和尾插 这个地方有一个易错点 首先对尾插来说&#xff0c;如果我们插入的是…

国庆《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书行将售罄

国庆《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书行将售罄 国庆《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书行将售罄

Vue之transition组件

Vue提供了transition组件&#xff0c;使用户可以更便捷地添加过渡动画效果。 transition组件 transition组件也是一个抽象组件&#xff0c;并不会渲染出真实dom。Vue会在其第一个真实子元素上添加过渡效果。 props render 这里将render分为两部分&#xff0c;第一部分界定真…

【模板语法+数据绑定+el与data的两种写法+MVVM模型】

模板语法数据绑定el与data的两种写法MVVM模型 1 模板语法1.1 插值语法1.2 指令语法 2 数据绑定2.1 单向数据绑定2.2 双向数据绑定 3 el与data的两种写法4 MVVM模型 1 模板语法 1.1 插值语法 双大括号表达式功能&#xff1a;用于解析标签体内容语法&#xff1a;{{xxx}}&#x…

Firecamp2.7.1exe安装与工具调试向后端发送SocketIO请求

背景&#xff1a; 笔者在python使用socket-io包时需要一个测试工具&#xff0c;选择了firecamp这个测试工具来发送请求。 参考视频与exe资源包&#xff1a; Firecamp2.7.1exe安装包以及基本使用说明文档&#xff08;以SocketIO为例&#xff09;.zip资源-CSDN文库 15_send方法…

论文笔记(整理):轨迹相似度顶会论文中使用的数据集

0 汇总 数据类型数据名称数据处理出租车数据波尔图 原始数据&#xff1a;2013年7月到2014年6月&#xff0c;170万条数据 ICDE 2023 Contrastive Trajectory Similarity Learning with Dual-Feature Attention 过滤位于城市&#xff08;或国家&#xff09;区域之外的轨迹 过…

html、css学习记录【uniapp前奏】

Html 声明&#xff1a;该学习笔记源于菜鸟自学网站&#xff0c;特此记录笔记。很多示例源于此官网&#xff0c;若有侵权请联系删除。 文章目录 Html声明&#xff1a; CSS 全称 Cascading Style Sheets&#xff0c;层叠样式表。是一种用来为结构化文档&#xff08;如 HTML 文档…

NLP 04(GRU)

一、GRU GRU (Gated Recurrent Unit)也称门控循环单元结构,它也是传统RNN的变体,同LSTM一样能够有效捕捉长序列之间的语义关联&#xff0c; 缓解梯度消失或爆炸现象&#xff0c;同时它的结构和计算要比LSTM更简单,它的核心结构可以分为两个部分去解析: 更新门、重置门 GRU的内…

宝塔 php修改了php.ini配置不生效

最近在使用hypref&#xff0c;php的版本是7.4 服务器linux&#xff0c;用宝塔安装完php,并装完swoole插件后 安装了swoole后&#xff0c;需要在php.ini中修改一下配置文件 添加 swoole.use_shortnameOff 但是添加了&#xff0c;重启php,依然不生效 解决方法是&#xff1a; 同时…

AI项目十三:PaddleOCR训练自定义数据集

若该文为原创文章&#xff0c;转载请注明原文出处。 续上一篇&#xff0c;PaddleOCR环境搭建好了&#xff0c;并测试通过&#xff0c;接下来训练自己的检测模型和识别模型。 paddleocr检测模型训练 1、准备数据集 在PaddleOCR目录下新建文件夹&#xff1a;train_data, 这个…

idea2023根据表自动生成+springboot跑起来

idea安装插件 idea中显示数据库连接 就可以看到如下界面 选中你想生成的表&#xff0c;右键如下操作 如上就有了所有需要的后端代码 生成后&#xff0c;要查看一下mapper.xml中的文件是否 正确&#xff0c;若有误请先去修改&#xff0c;例如我的版本下生成了xml文件中缺乏…

从 低信噪比陆上地震记录 解决办法收集 到 走时层析反演中的折射层析调研

目录 (前言1) 关于背景的回答:(前言2) 现有的降低噪声, 提高信噪比的一些特有方法的论文资料 (传统策略):1. 关于波形反演与走时层析反演2. 折射层析3. 用一个合成数据来解释折射层析反演的思路4. 其他层析反演方法:5. 关于层析反演的一些TIPS (可补充)参考文献: 降噪有关资料参…

Unity中Shader的前向渲染路径ForwardRenderingPath

文章目录 前言一、前向渲染路径的特点二、渲染方式1、逐像素(效果最好)2、逐顶点(效果次之)3、SH球谐(效果最差) 三、Unity中对灯光设置 后&#xff0c;自动选择对应的渲染方式1、ForwardBase仅用于一个逐像素的平行灯&#xff0c;以及所有的逐顶点与SH2、ForwardAdd用于其他所…

GitHub 基本操作

最近要发展一下自己的 github 账号了&#xff0c;把以前的项目代码规整规整上传上去&#xff0c;这里总结了一些经验&#xff0c;经过数次实践之后&#xff0c;已解决几乎所有基本操作中的bug&#xff0c;根据下面的操作步骤来&#xff0c;绝对没错了。&#xff08;若有其他问题…

Java初始化大量数据到Neo4j中(二)

接Java初始化大量数据到Neo4j中(一)继续探索&#xff0c;之前用create命令导入大量数据发现太过耗时&#xff0c;查阅资料说大量数据初始化到Neo4j需要使用neo4j-admin import 业务数据说明可以参加Java初始化大量数据到Neo4j中(一)&#xff0c;这里主要是将处理好的节点数据和…

装饰器模式详解和实现(设计模式 二)

装饰器模式&#xff08;Decorator Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许你动态地将对象添加到现有对象中&#xff0c;以提供额外的功能&#xff0c;同时又不影响其他对象。 实现示例 1.定义一个接口或抽象类&#xff0c;表示被装饰对象的公共接口 //抽…

3D孪生场景搭建:模型区域摆放

前面介绍完了NSDT场景编辑器的线性绘制和阵列绘制&#xff0c;本章将讲述下编辑器的另一种绘制方式&#xff1a;区域绘制。 1、区域绘制功能简介 在场景中绘制资产时&#xff0c;除使用上述两个的方式外&#xff0c;NSDT 编辑器还支持使用区域绘制的方式进行绘制。先选取需要…

Linux常用指令(二)

目录 一、 删除空目录&#xff08;rmdir&#xff09; 二、ln 硬链接与软链接 三、新建空文件或更新文件的时间戳&#xff08;touch&#xff09; 四、比较文件内容的差异&#xff08;diff&#xff09; 五、显示当前时间或设置系统时间&#xff08;date&#xff09; 六、显…

Git多账号管理通过ssh 公钥的方式,git,gitlab,gitee

按照目前国内访问git&#xff0c;如果不科学上网&#xff0c;我们很大可能访问会超时。基于这个&#xff0c;所以我现在的git 配置已经增加到了3个了 一个公司gitlab&#xff0c;一个git&#xff0c;一个gitee. 以下基于这个环境&#xff0c;我们来说明下如何创建配置ssh公钥。…

信号类型(雷达)——脉冲雷达(四)

系列文章目录 《信号类型&#xff08;雷达通信&#xff09;》 《信号类型&#xff08;雷达&#xff09;——雷达波形认识&#xff08;一&#xff09;》 《信号类型&#xff08;雷达&#xff09;——连续波雷达&#xff08;二&#xff09;》 《信号类型&#xff08;雷达&…