数据的均匀化分割算法(网格划分法、四叉树法(含C++代码))

数据的均匀化分割主要是指在分割过程中尽可能均匀地将数据点分布在各个子区域中,以保持数据分布的平衡和优化数据结构的性能。以下是几种可以实现数据均匀化分割的方法:

一. 网格划分法

1. 基本概念

        虽然传统的网格划分法不是动态调整的,但通过设计可以实现均匀的空间分割。例如,可以根据数据点的分布密度来调整网格的划分粒度,使得每个网格单元内包含的数据点数量尽量均匀。

        具体的,二维网格划分是一种对二维空间进行均匀分割的技术,用于将这种空间划分为多个小的、有时是规则的区域或单元,称为“网格”或“格子”。在图像处理中,二维网格划分可以用于将图像划分成小块进行局部分析或并行处理,从而加速图像处理任务如滤波、特征检测等。

2. 示例

  我有一组特征点存储在 std::vector<cv::KeyPoint> 类型的变量 vToDistributeKeys 中。这些特征点位于一张大小为宽1276像素、高378像素的图片上。为了在二维空间上实现点的均匀分布,我需要将图片分割成一个6x6的网格(共36个方块)。在每个方块内,我希望只保留具有最大置信度的特征点,并删除该方块内的其他点。下面是实现这一功能的具体C++代码。

#include <iostream>
#include <vector>
#include <opencv2/core/types.hpp>// 将特征点按网格均匀分布,每个网格只保留置信度最高的特征点
std::vector<cv::KeyPoint> distributeAndFilterKeys(const std::vector<cv::KeyPoint>& keypoints, int width, int height, int gridRows, int gridCols) {// 计算每个网格的尺寸int cellWidth = width / gridCols;int cellHeight = height / gridRows;// 初始化网格,用于存储每个网格的最高置信度的特征点std::vector<std::vector<cv::KeyPoint>> grid(gridRows, std::vector<cv::KeyPoint>(gridCols));// 遍历所有特征点for (const auto& keypoint : keypoints) {int gridX = keypoint.pt.x / cellWidth;int gridY = keypoint.pt.y / cellHeight;// 确保网格索引不越界if (gridX >= gridCols) gridX = gridCols - 1;if (gridY >= gridRows) gridY = gridRows - 1;// 检查当前网格是否已有特征点,或者当前特征点置信度是否更高if (!grid[gridY][gridX].empty() && grid[gridY][gridX][0].response < keypoint.response) {grid[gridY][gridX][0] = keypoint;} else if (grid[gridY][gridX].empty()) {grid[gridY][gridX].push_back(keypoint);}}// 收集所有网格中的最佳特征点std::vector<cv::KeyPoint> filteredKeyPoints;for (int y = 0; y < gridRows; ++y) {for (int x = 0; x < gridCols; ++x) {if (!grid[y][x].empty()) {filteredKeyPoints.push_back(grid[y][x][0]);}}}return filteredKeyPoints;
}int main() {// 假设的特征点数据std::vector<cv::KeyPoint> keypoints = {{cv::Point2f(100, 50), 1.f, -1, 0.8},{cv::Point2f(120, 60), 1.f, -1, 0.9},{cv::Point2f(130, 55), 1.f, -1, 0.95},// 添加更多点以测试};// 图片尺寸和网格配置int width = 1276;int height = 378;int gridRows = 6;int gridCols = 6;// 处理特征点std::vector<cv::KeyPoint> filteredKeyPoints = distributeAndFilterKeys(keypoints, width, height, gridRows, gridCols);// 输出结果for (const auto& kp : filteredKeyPoints) {std::cout << "Keypoint at (" << kp.pt.x << ", " << kp.pt.y << ") with response: " << kp.response << std::endl;}return 0;
}

二. 四叉树均匀化与非极大值抑制结合使用

在实际应用中,可以先对ORB特征点进行四叉树均匀化,然后再对每个子区域内的特征点进行非极大值抑制。这样可以在保证特征点分布均匀性的同时,提高特征点的质量和稳定性,最终得到更优的特征点集合。

1. 四叉树的基本概念

        在图像中,某些区域可能存在大量的特征点,而其他区域可能只有很少的特征点。这种不均匀分布会影响特征点的代表性和匹配效果。

        首先把一幅图案或一个幅面分割成多个分区或者部分。如果某个子区域内的特征点数量少于某个预设阈值,或者已经达到了分割的最小尺度,则这个子区域不再进行分割。如果特征点过于密集,则继续将这个区域分割成四个更小的子区域,并递归地对每个子区域进行同样的分割过程,直至每个子区域内的特征点数量满足预设条件。

        通过控制划分的停止条件(如特征点数量少于阈值、达到最小分割尺寸等),可以在保证足够的特征点总数的同时,让特征点在图像的不同区域内尽可能均匀分布。

        在划分完成后,每个子区域内可能包含多个特征点。为了进一步提高均匀性和代表性,可以在每个子区域内只保留响应值最大的特征点,去除其他的特征点。

2. 非极大值抑制

        非极大值抑制是一种常用的特征点后处理方法,主要用于去除临近区域内响应值较低的特征点,保留局部最大的特征点。其基本原理是,对于每个特征点,检查其周围邻域内是否存在响应值更大的特征点。如果存在,则将当前特征点去除;如果不存在,则保留当前特征点。

3. 示例

      一组特征点存储在 std::vector<cv::KeyPoint> 类型的变量 vToDistributeKeys 中。这些特征点分布在一张宽为1276像素、高为378像素的图片上。要求将图片分割成至少25个区域。

#include <opencv2/opencv.hpp>
#include <vector>
#include <algorithm>// 定义四叉树节点结构体
struct QuadTreeNode {cv::Rect rect;  // 节点代表的区域std::vector<cv::KeyPoint> keypoints;  // 节点内的特征点QuadTreeNode* children[4];  // 子节点指针QuadTreeNode(cv::Rect _rect) : rect(_rect) {for (int i = 0; i < 4; i++) {children[i] = nullptr;}}
};// 递归建立四叉树
void buildQuadTree(QuadTreeNode* node, const std::vector<cv::KeyPoint>& keypoints, int minPoints, int maxLevel, int level) {if (level >= maxLevel || node->keypoints.size() <= minPoints) {return;}// 将当前节点划分为四个子区域int halfWidth = node->rect.width / 2;int halfHeight = node->rect.height / 2;cv::Rect childRects[4] = {cv::Rect(node->rect.x, node->rect.y, halfWidth, halfHeight),cv::Rect(node->rect.x + halfWidth, node->rect.y, halfWidth, halfHeight),cv::Rect(node->rect.x, node->rect.y + halfHeight, halfWidth, halfHeight),cv::Rect(node->rect.x + halfWidth, node->rect.y + halfHeight, halfWidth, halfHeight)};// 为每个子区域创建子节点for (int i = 0; i < 4; i++) {node->children[i] = new QuadTreeNode(childRects[i]);}// 将特征点分配到子节点中for (const auto& keypoint : node->keypoints) {for (int i = 0; i < 4; i++) {if (node->children[i]->rect.contains(keypoint.pt)) {node->children[i]->keypoints.push_back(keypoint);break;}}}// 递归建立子节点的四叉树for (int i = 0; i < 4; i++) {buildQuadTree(node->children[i], node->children[i]->keypoints, minPoints, maxLevel, level + 1);}
}// 非极大值抑制
void nonMaximumSuppression(std::vector<cv::KeyPoint>& keypoints, float radius) {std::vector<cv::KeyPoint> nmsKeypoints;std::sort(keypoints.begin(), keypoints.end(), [](const cv::KeyPoint& a, const cv::KeyPoint& b) {return a.response > b.response;});std::vector<bool> mask(keypoints.size(), true);for (size_t i = 0; i < keypoints.size(); i++) {if (mask[i]) {nmsKeypoints.push_back(keypoints[i]);for (size_t j = i + 1; j < keypoints.size(); j++) {if (cv::norm(keypoints[i].pt - keypoints[j].pt) <= radius) {mask[j] = false;}}}}keypoints = nmsKeypoints;
}// 四叉树均匀化结合非极大值抑制
void quadTreeUniformNMS(std::vector<cv::KeyPoint>& keypoints, int minPoints, int maxLevel, float nmsRadius) {// 创建根节点QuadTreeNode* root = new QuadTreeNode(cv::Rect(0, 0, 1276, 378));root->keypoints = keypoints;// 建立四叉树buildQuadTree(root, keypoints, minPoints, maxLevel, 0);// 对每个叶子节点进行非极大值抑制std::vector<cv::KeyPoint> uniformKeypoints;std::function<void(QuadTreeNode*)> traverseQuadTree = [&](QuadTreeNode* node) {if (node->children[0] == nullptr) {nonMaximumSuppression(node->keypoints, nmsRadius);uniformKeypoints.insert(uniformKeypoints.end(), node->keypoints.begin(), node->keypoints.end());} else {for (int i = 0; i < 4; i++) {traverseQuadTree(node->children[i]);}}};traverseQuadTree(root);keypoints = uniformKeypoints;// 释放内存std::function<void(QuadTreeNode*)> deleteQuadTree = [&](QuadTreeNode* node) {if (node->children[0] != nullptr) {for (int i = 0; i < 4; i++) {deleteQuadTree(node->children[i]);delete node->children[i];}}};deleteQuadTree(root);delete root;
}int main() {std::vector<cv::KeyPoint> vToDistributeKeys;// ... 初始化 vToDistributeKeys ...int minPoints = 1;  // 每个区域最少特征点数量int maxLevel = 5;  // 最大分割层数float nmsRadius = 10.0f;  // 非极大值抑制半径quadTreeUniformNMS(vToDistributeKeys, minPoints, maxLevel, nmsRadius);// ... 使用均匀化后的特征点 vToDistributeKeys ...return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1419805.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

共享旅游卡免费旅游真实反馈,有图有真相?

新伙伴体验&#xff0c;云南昆大丽6天5晚品质双人游&#xff0c;真实反馈&#xff01;珠海伙伴蔡总&#xff0c;加入千益畅行共享旅游卡团队&#xff0c;自己亲自体验“云南昆大丽6天5晚品质双人游”真实反馈&#xff0c;分享全程内容截图&#xff0c;无半点虚假&#xff01; …

C语言例题36、判断一个数是否是回文数

题目要求&#xff1a;输入一个5位数&#xff0c;判断它是不是回文数。即12321是回文数 #include <stdio.h>int main() {int x;int ge, shi, qian, wan;printf("请输入一个5位数&#xff1a;");scanf("%d", &x);ge x % 10; //个sh…

Android ashmem 原理分析

源码基于&#xff1a;Andoird U Kernel-5.10 0. 简介 ashmem 称为匿名共享内存(Anonymous Shared Memory)&#xff0c;它以驱动程序的形式实现在内核空间中。它有两个特点&#xff1a; 能否辅助内存管理系统来有效地管理不再使用的内存块(pin / unpin)&#xff1b; 通过Bind…

ROS2 工作空间

文章目录 ROS2 工作空间创建工作空间自动安装依赖编译工作空间设置环境变量参考链接 ROS2 工作空间 工作空间可以简单理解为工程目录。 ROS 系统中一个典型的工作空间结构如图所示&#xff1a; dev_ws&#xff1a; 根目录&#xff0c;里面会有四个子目录&#xff08;子空间&a…

贪心算法----摆动序列

今日题目&#xff1a;leetcode376 点击跳转题目 观察样例2&#xff1a; 发现最长摆动序列都是极大值和极小值 再加上两个端点&#xff0c;那么我们保证每次都能选择到每个极值点&#xff0c;就能从局部最优推广全局最优了&#xff01; 但是还有一些细节情况需要注意&#xff…

记录一次接口优化的过程。接口响应时间从500s下降到5s。

记录一次接口优化的过程。接口响应时间从500s下降到5s。 接口说明&#xff1a; 该接口通过用户导入的一年内每天的厂区用电功率数据来计算用户安装储能设备后的收益情况。 用电功率数据具体为每15分钟一条&#xff0c;一年约有 12*30*24*4 34560 条。 代码循环情况为&…

Collection工具类

Collection工具类的介绍 Collection 是一个操作Set、List和Map等集合的工具类Collection中提供了一些列静态的方法对集合元素进行排序、查询和修改的等操作 Collection的排序操作&#xff08;均为Static方法&#xff09; 1&#xff0c;reverse&#xff08;List&#xff09;&…

uniapp管理后台编写,基于uniadmin和vue3实现uniapp小程序的管理后台

一&#xff0c;创建uniAdmin项目 打开开发者工具Hbuilder,然后点击左上角的文件&#xff0c;点新建&#xff0c;点项目。如下图。 选择uniadmin&#xff0c;编写项目名&#xff0c;然后使用vue3 记得选用阿里云服务器&#xff0c;因为最便宜 点击创建&#xff0c;等待项目创…

CRAY-1向量流水处理部分

向量流水线 可并行 数据独立操作类型不相同 可链接 操作数直接传入到下一条指令 这里我们复习一下&#xff0c;CRAY-1向量流水处理部分的相关知识点&#xff1a; CRAY-1启动访存、把元素送往功能部件及结果存入Vi都需要1拍的传送延迟。 CRAY-1访存流水线的建立需要6拍&#…

即插即用篇 | YOLOv8引入局部自注意力 HaloAttention | 为参数高效的视觉主干网络扩展局部自注意力

本改进已集成到 YOLOv8-Magic 框架。 我们提出了Axial Transformers,这是一个基于自注意力的自回归模型,用于图像和其他组织为高维张量的数据。现有的自回归模型要么因高维数据的计算资源需求过大而受到限制,要么为了减少资源需求而在分布表达性或实现的便捷性上做出妥协。相…

小程序获取手机号,用户昵称,头像

一、手机号 在微信小程序中&#xff0c;获取用户手机号也需要用户的明确授权。你可以使用 button 组件的 open-type 属性设置为 getPhoneNumber 来实现这个功能。当用户点击这个按钮时&#xff0c;会弹出一个对话框请求用户的授权。如果用户同意&#xff0c;你可以在 bindgetp…

string类常见题目详解(二) —— 仅仅反转字母、字符串中的第一个唯一字母、字符串最后一个单词的长度、验证回文串、字符串相加

本专栏内容为&#xff1a;C学习专栏&#xff0c;分为初阶和进阶两部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握C。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&…

第四百九十八回

文章目录 1. 概念介绍2. 使用方法2.1 固定样式2.2 自定义样式 3. 示例代码4. 内容总结 我们在上一章回中介绍了"GetMaterialApp组件"相关的内容&#xff0c;本章回中将介绍使用get显示SnackBar.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在介…

【C语言】/*操作符(下)*/

目录 一、操作符的分类 二、二进制和进制转换 2.1 进制 2.2 进制之间的转换 三、原码、反码、补码 四、单目操作符 五、逗号表达式 六、下标引用操作符[] 七、函数调用操作符() 八、结构体成员访问操作符 8.1 直接访问操作符(.) 8.2 间接访问操作符(->) 九、操作符…

跳跃游戏 II解题思路详解

题解 跳跃游戏 II &#x1f91a;我的博客&#x1f95b;前言 跳跃游戏 II描述示例提示 题解初步思考思路细节代码实现完整代码 END&#x1f4a0;END&#x1f3d5;️公众号 &#x1f91a;我的博客 欢迎光临我的博客&#xff1a;https://blog.csdn.net/qq_52434217?typeblog &a…

Leedcode题目:移除链表元素

题目&#xff1a; 这个题目就是要我们将我们的链表中的值是val的节点删除。 我们题目提供的接口是 传入了指向一个链表的第一个节点的指针&#xff0c;和我们要删除的元素的值val&#xff0c;不只要删除第一个&#xff0c; 思路 我们这里可以创建一个新的链表&#xff0c;…

鸿蒙开发接口Ability框架:【DataAbilityHelper模块(JS端SDK接口)】

DataAbilityHelper模块(JS端SDK接口) 说明&#xff1a; 本模块首批接口从API version 7开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 本模块接口仅可在FA模型下使用。 使用说明 使用前根据具体情况引入如下模块 import featureAbility from …

万能自定义表单系统源码开源版 支持普通表单、付费报名、预约服务等三合一功能

源码简介 高效、灵活地收集和管理数据对于各项运营和决策至关重要&#xff0c;方便了各行业对数据收集的多样化需求。分享一个万能自定义表单系统源码开源&#xff0c;该系统拥有强大的自定义功能和广泛的适用性&#xff0c;支持普通表单、付费报名、预约服务等三合一功能。 …

心理应用工具包 psychtoolbox 绘制小球走迷宫

psychtoolbox 是 MATLAB 中的一个工具包&#xff0c;对于科研人员设计实验范式来说是不二之选&#xff0c;因为它可以操作计算机的底层硬件&#xff0c;精度可以达到帧的级别。 文章目录 一、实验目的二、psychtoolbox 的下载安装三、Psychtoolbox 的基本使用四、完整代码 一、…

VSCode:隐藏工程中的文件和目录

VSCode&#xff1a;设置搜索时的排除目录_vscode全局搜索排除掉某些目录-CSDN博客 介绍了如何排除搜索目录 有时也需要隐藏工程中不必关注的文件和目录。 假设工程中的文件结构如下 $ tree . ├── doc │ └── readme.txt ├── m.cpp └── user_guide 可以通过如下方…