什么是RAG? LangChain的RAG实践!

1. 什么是RAG

RAG的概念最先在2020年由Facebook的研究人员在论文《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》中提出来。在这篇论文中他们提出了两种记忆类型:

  • 基于预训练模型(当时LLM的概念不像现在这么如日中天,但LLM也可以被归类为预训练模型)的参数型记忆;
  • 基于向量的非参数型记忆。

RAG技术将这两种记忆类型进行了整合,最终,在知识密集型的NLP任务上,比如QA,比单独使用上述两种类型的记忆获得了更好的效果。接下来将具体介绍RAG如何来补充LLM的一些短板,以及在两种记忆的具体体现,并使用LangChain来实现基本RAG流程。

2. LLM面临的挑战和RAG带来的好处

目前来看,LLM是几乎是解决各个任务的最佳解决方案。在通用聊天这一领域,很多大模型都能够实现接近人类的水平表现。但它的表现也不是完美,也存在着诸多不足:

  • 在没有答案的情况下提供虚假的信息(幻觉);
  • 在专业领域表现不足,无法给出回答,这和大模型使用的训练数据息息相关,很多领域的数据是相对粉封闭的;
  • 对于同样的问题可能会产生不同的回答,这在对问题答案稳定性要求高的领域是不能接受的;
  • 无法感知不断变化的知识。

可以把大模型比做一个刚毕业找到工作的大学生,他具备了很多通识性的知识,但对组织内部的专业知识知之甚少,因此需要尽快掌握组织内部的领域知识,可以让资深员工手把手的传输知识,也可以通过阅读组织内的文档吸收知识。与此类似,RAG通过问题匹配知识,并将知识带给大模型,再利用大模型出色的生成能力来回答问题,这样大模型这个“新人”就能变得专业,也能感知到不断变化的外部信息。

3. LangChain的RAG实践

在本节,我们将重点利用LangChain框架来进行RAG实践

3.1 RAG架构

典型的RAG架构与搜索引擎的架构类型,分为离线和在线部分,其中离线部分是对数据进行索引,这里的索引和传统的搜索引擎的倒排索引不同,这里的索引是对数据的向量化,如图(来自LangChain官网)

image.png

从图中我们可以清晰的看到,在离线索引阶段,总共有4个主要的步骤:

  1. 加载内容,非结构化数据通常需要提取内容,比如从word文档、pdf文档中提取文本内容;
  2. 内容分块,将提取的内容进一步切分为小块(chunk),这样在匹配问题时可以将上下文缩减到很小;
  3. 对于每个分块的内容获取其向量(embedding),这个获取向量的过程可以借助大模型本身的能力来实现,例如,gpt就提供了embedding的接口;
  4. 存储向量,将获取的向量通过向量数据库存储起来,方便查询。

这里最终存储的结果就是论文中提出的基于向量的非参数化的记忆。 接下来我们再来看在线(检索和生成)的部分,如图(来自LangChain官网)

image.png

在Question到大模型这条链路中,增加了Retrieve这个步骤。用户的问题被embedding后,会在向量库中匹配出最佳的内容,并和用户的问题一起,构成Prompt交给大模型,大模型根据这个Prompt再生成对应的答案返回给用户。除了第二节中提到的RAG带来的好处,这里还有一个工程层面的优势,通过Retrieve找到与问题最相关的知识,从而减少了上下文,压缩了Prompt的token数量。

上面两部分构成了RAG的基本架构,下面我们将使用LangChain来完整的实现一个RAG原型。

3.2 基于LangChain的RAG实现

为了方便我们对比效果,我们首先先实现一个直接将问题抛给大模型的流程,代码如下:

ini
复制代码
from langchain_community.llms import LlamaCpp
# 加载本地模型文件地址,使用mixtral-8*7B的大模型
model_home = "~/models/mixtral-8x7b-instruct-v0.1.Q8_0.gguf"
# 使用llm_model作为加载框架
llm_model = LlamaCpp(model_path=model_home)
prompt = "孙悟空几打白骨精?"
print(llm_model.invoke(prompt))

这里,我使用的是本地的大模型mixtral-8X7B-instruct 8位量化的版本,通过LlamaCpp框架进行加载。模型输出的答案为

erlang
复制代码
孙悟空与白骨精的第一次较量是在《西游记》第六回中发生的,这是在孙悟空带着猪八戒、沙和尚前来拜访时,白骨精就偷偷地上前来欺诈孙悟空和他的同伴们。当时,白骨精就利用孙悟空和他的同伴们对于自己还不知道的身份感到的好奇心进行了诱饵计 stratagem.当时,孙悟空和他的同伴们都没有想到白骨精会是一个女妖的存在,所以他们都被白骨精诱饵计 seduction stratagem给骗了过来,而在此期间,孙悟空和他的同伴们都没有意识到到底是谁在利用他们的

可以看到,模型给出的答案,并不尽如人意。首先,“三打白骨精”这个故事并不是在原文第六回发生的,其次,给的答案并没有准确的回复“几打”这个问题。 即便是ChatGPT 3.5 也无法回答这样的问题。

image.png

我们尝试用RAG来解决这个问题。基于RAG的流程和架构,我们除了依赖大模型,还需要依赖一个用于向量存储和查询的引擎,为了方便,直接follow官方的样例,使用Chroma。

对于非参数化记忆,我先后选择了目录、《三打白骨精》这章内容和《三打白骨精》概要。

下面的代码实现了RAG的离线过程:

ini
复制代码
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.embeddings import LlamaCppEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma# 使用DirectoryLoader 加载文件,作为外部知识
loader = DirectoryLoader('/Users/trent/dev/data/rag', glob="**/*.txt")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
embeddings = LlamaCppEmbeddings(model_path=model_home)
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)

下面的代码实现了RAG的在线过程:

python
复制代码
import os
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough# 可以在LangSimth生成一个API key用于整个RAG链路的追踪
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "langSimth_api_key"# 将向量存储作为retriever
retriever = vectorstore.as_retriever()
# 从[LangSmith Hub](https://smith.langchain.com/hub)拉取promt的模版
prompt = hub.pull("rlm/rag-prompt")def format_docs(docs):return "\n\n".join(doc.page_content for doc in docs)rag_chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt| llm_model| StrOutputParser()
)

我们以RAG的形式再次进行提问:

arduino
复制代码
rag_chain.invoke("孙悟空几打白骨精?")

非参数化记忆的不同,得到的答案也不尽相同,对于这个问题,概要作为非参数化记忆,得到的答案最为准确。 下面是LangSmith中对利用三个外部文件进行试验的结果。

截屏2024-04-05 22.37.54.png

这里要推荐一下LangSmith这个可观测性组件,可以清晰的追踪到RAG的流程,以下图为例,既可以看到一次Q&A的全过程,又可以观测到Retriever的输入输出。

截屏2024-04-05 22.42.14.png

以上就是用LangChain实现的一个简单RAG流程。

Retriever这个组件的引入可以有效的增强LLM的能力,但也会带来新的挑战:

  1. 外部的知识如何选择,不同的外部知识会带来不一样的效果表现,这就要具体问题具体分析了;
  2. 外部的知识如何进行处理,chunk如何切分,chunk size如何设置等等;
  3. 提问的模板如何设置,好的提问模板可以充分利用LLM的能力,从工程上来讲,Context的长度也需要尽可能的精简。

这些问题,需要在具体的场景中进行具体的分析,同时也需要有合适的机制通过不断的反馈来积累最佳实践。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/14136.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

第二十一章、Qt对XML文件进行读写操作详解

目录 一、XML文件的简介 二、QXML的接口介绍 三、XML示例 四、QXML的介绍 5.1、QDomDocument详解 5.2、QDomElement详解 5.3、QDomAttr详解 六、使用QXML解析XML示例 七、构建并保存xml 一、XML文件的简介 可扩展标记语言 (Extensible Markup Language, XML) ,标准通…

03-axios常用的请求方法、axios错误处理

欢迎来到“雪碧聊技术”CSDN博客! 在这里,您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者,还是具有一定经验的开发者,相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导,我将…

小小的mfc100u.dll文件到底是什么?mfc100u.dll丢失的解决方法有哪些?

对于许多电脑用户来说,软件突然无法启动并显示“mfc100u.dll丢失”是一件非常头疼的事情。你可能正急于完成一份重要的文档,或者沉浸在紧张刺激的游戏关卡中,而这个错误提示就像一盆冷水,无情地浇灭了你的热情。这个小小的mfc100u…

华为eNSP:MSTP

一、什么是MSTP? 1、MSTP是IEEE 802.1S中定义的生成树协议,MSTP兼容STP和RSTP,既可以快速收敛,也提供了数据转发的多个冗余路径,在数据转发过程中实现VLAN数据的负载均衡。 2、MSTP可以将一个或多个VLAN映射到一个Inst…

使用cloudflare搭建私人docker镜像站

背景 大家是否也有docker镜像拉取速度慢,甚至直接拉不下来的情况,我们可以使用cloudflare加速拉取镜像。 申请域名 开始前需要准备cloudflare账号并自购一个域名。域名可以在云厂商购买,可以看到非主流域名比较实惠。 购买完成后在域名控…

晶振选择指南:应对温度波动的关键因素

晶振的选择对于电子设备来说至关重要,尤其是在面对温度波动的情况下。晶振作为时钟信号源,其性能直接影响到设备的稳定性和可靠性。因此,在选择晶振时,需要根据实际应用场景以及对时钟精度的要求来进行。以下是一些建议&#xff1…

gpu-V100显卡相关知识

一、定义 RuntimeError: FlashAttention only supports Ampere GPUs or newer.torch attention注意力接口学习V100 架构是什么? 二、实现 RuntimeError: FlashAttention only supports Ampere GPUs or newer. 报错原因分析: GPU机器配置低,…

【go从零单排】HTTP客户端和服务端

🌈Don’t worry , just coding! 内耗与overthinking只会削弱你的精力,虚度你的光阴,每天迈出一小步,回头时发现已经走了很远。 📗概念 在 Go 语言中,net/http 包提供了强大的 HTTP 客户端和服务器功能。 &…

从Web2到Web3:区块链推动的数字进化之路

互联网的演变从最初的Web1到如今的Web3,代表了技术和用户需求的深刻变化。Web3是一个基于区块链技术的全新互联网架构,旨在解决传统互联网(即Web2)中数据集中化和隐私保护等问题。通过去中心化的机制,Web3不仅能够增强…

vue自定义计算器组件

自定义组件实现以下简单的计算器功能&#xff1a; 创建计算器组件文件calculator.vue&#xff0c;代码如下&#xff1a; <template><div class"calculator"><!-- 当前运算过程显示区域 --><div class"expression">{{ currentExpr…

希音面试:亿级用户 日活 月活,如何统计?(史上最强 HyperLogLog 解读)

本文原文链接 尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格&#xff0c;遇到很多很重要的面试题&#xff1a; 如何 统计一个 网站 的日活、月活数&a…

2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序

2023年第十三届MathorCup高校数学建模挑战赛 B题 城市轨道交通列车时刻表优化问题 原题再现&#xff1a; 列车时刻表优化问题是轨道交通领域行车组织方式的经典问题之一。列车时刻表规定了列车在每个车站的到达和出发&#xff08;或通过&#xff09;时刻&#xff0c;其在实际…

Python数据分析NumPy和pandas(三十一、数据聚合)

聚合是指从数组生成标量值的数据转换。上一次学习的代码示例使用了其中几个聚合函数&#xff0c;包括 mean、count、min 和 sum。常见的聚合见下图列表&#xff0c;但是&#xff0c;不仅限于列表中的这组方法。在 GroupBy 对象上调用聚合函数&#xff08;例如&#xff1a; mean…

公链数字钱包开发与加密钱包App原生开发

随着区块链技术的不断发展&#xff0c;数字货币和去中心化金融&#xff08;DeFi&#xff09;的兴起&#xff0c;公链数字钱包的需求日益增加。数字钱包不仅为用户提供存储、管理和交易数字资产的工具&#xff0c;而且也为区块链技术的应用提供了一个重要的入口。开发一个安全、…

0. 0:《跟着小王学Python·新手》

《跟着小王学Python新手》系列 《跟着小王学Python》 是一套精心设计的Python学习教程&#xff0c;适合各个层次的学习者。本教程从基础语法入手&#xff0c;逐步深入到高级应用&#xff0c;以实例驱动的方式&#xff0c;帮助学习者逐步掌握Python的核心概念。通过开发游戏、构…

HTTPTomcatServle之HTTP详解

✨博客主页&#xff1a; https://blog.csdn.net/m0_63815035?typeblog &#x1f497;《博客内容》&#xff1a;.NET、Java.测试开发、Python、Android、Go、Node、Android前端小程序等相关领域知识 &#x1f4e2;博客专栏&#xff1a; https://blog.csdn.net/m0_63815035/cat…

「数据要素」行业简报|2024.11.上刊

纵观数据要素行业动态&#xff0c;洞察行业风向&#xff0c;把握行业脉搏&#xff01; 一、政策发布 1、《山东省公共数据资源登记管理工作规范(试行)》公开征求意见 11月7日&#xff0c;为认真贯彻落实《中共中央办公厅 国务院办公厅关于加快公共数据资源开发利用的意见》《…

NFS Write IO 不对齐深度分析

背景 最近团队小伙伴弗曼统计了线上用户数据写入对齐情况&#xff0c;通过统计数据发现了一个有趣的现象: 用户写入请求中近 70% 的数据块 4K 不对齐&#xff0c;这也就是说 NFSClient 对大多数的应用写入没有做对齐优化。 下面会从 NFSClient BufferWrite 实现流程的维度解释…

微型导轨在自动化生产线中起什么作用?

在现代制造业的飞速跃进中&#xff0c;自动化生产线的蓬勃发展引领了一场效率与质量的双重革命。微型导轨作为传动领域的重要零部件&#xff0c;可用于工业自动化生产线上的零件运输、加工设备定位等&#xff0c;实现自动化生产和减少人力成本。那么&#xff0c;微型导轨在自动…

【ESP32】DIY一个电子测光仪

这里写目录标题 0 前言1 开箱2 过程2.1 下载固件2.2 烧录固件2.3 编程环境 Thonny2.4 点灯大师2.5 TFT屏幕2.6 BH1750传感器 成果展示 0 前言 开发板&#xff1a;ESP32-S3-5691 开发环境&#xff1a;circuitpythonthony 1 开箱 2 过程 2.1 下载固件 使用circuitpython的方式开…