贪心算法 Greedy Algorithm

1) 贪心例子

称之为贪心算法或贪婪算法,核心思想是

  1. 将寻找最优解的问题分为若干个步骤

  2. 每一步骤都采用贪心原则,选取当前最优解

  3. 因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优

  v2已经不会更新v3因为v3更新过了

贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。

贪心算法的应用:

  1. 背包问题:给定一组物品和一个背包,每个物品有一定的重量和价值,要求在不超过背包容量的情况下,尽可能多地装入物品。

  2. 活动选择问题:在一个活动集合中,每次只能参加一个活动,问如何安排时间以最大化所有活动的收益。

  3. 编辑距离问题:给定两个字符串,求它们之间的最小编辑距离(即将一个字符串转换为另一个字符串所需的最少操作次数)。

  4. 网络流问题:给定一张有向图和一些起点和终点,求最大流量。

  5. 找零问题:给定一定数量的硬币和需要找零的金额,求使用最少的硬币数。

常见问题及解答:

  1. 贪心算法一定会找到最优解吗? 答:不一定。贪心算法只保证在每一步选择中都是最优的,但并不能保证整个问题的最优解。例如,背包问题中的贪心算法可能会导致最后一个物品没有被装入背包。

  2. 如何判断一个问题是否适合用贪心算法解决? 答:一个问题如果可以用递归的方式分解成若干个子问题,且每个子问题都有明确的最优解(即局部最优),那么这个问题就可以用贪心算法解决。

  3. 贪心算法的时间复杂度是多少? 答:贪心算法的时间复杂度取决于问题的规模和具体实现。一般来说,对于规模较小的问题,贪心算法的时间复杂度可以达到O(nlogn)或O(n^2);对于规模较大的问题,可能需要O(n^3)或更高。

几个贪心的例子

Dijkstra
// ...
while (!list.isEmpty()) {// 选取当前【距离最小】的顶点Vertex curr = chooseMinDistVertex(list);// 更新当前顶点邻居距离updateNeighboursDist(curr);// 移除当前顶点list.remove(curr);// 标记当前顶点已经处理过curr.visited = true;
}
  • 没找到最短路径的例子:负边存在时,可能得不到正确解

  • 问题出在贪心的原则会认为本次已经找到了该顶点的最短路径,下次不会再处理它(curr.visited = true)

  • 与之对比,Bellman-Ford 并没有考虑局部距离最小的顶点,而是每次都处理所有边,所以不会出错,当然效率不如 Dijkstra

Prim
// ...
while (!list.isEmpty()) {// 选取当前【距离最小】的顶点Vertex curr = chooseMinDistVertex(list);// 更新当前顶点邻居距离updateNeighboursDist(curr);// 移除当前顶点list.remove(curr);// 标记当前顶点已经处理过curr.visited = true;
}
Kruskal
// ...
while (list.size() < size - 1) {// 选取当前【距离最短】的边Edge poll = queue.poll();// 判断两个集合是否相交int i = set.find(poll.start);int j = set.find(poll.end);if (i != j) { // 未相交list.add(poll);set.union(i, j); // 相交}
}

其它贪心的例子

  • 选择排序、堆排序

  • 拓扑排序

  • 并查集合中的 union by size 和 union by height

  • 哈夫曼编码

  • 钱币找零,英文搜索关键字

    • change-making problem

    • find Minimum number of Coins

  • 任务编排

  • 求复杂问题的近似解

2) 零钱兑换问题

有几个解(零钱兑换 II)Leetcode 518

[1,2,5]  5  暴力递归

有解:[1, 1, 1, 1, 1]
无解:[1, 1, 1, 1, 2]
无解:[1, 1, 1, 1, 5]
有解:[1, 1, 1, 2]
无解:[1, 1, 1, 5]
无解:[1, 1, 2, 2]
无解:[1, 1, 2, 5]
无解:[1, 1, 5]
有解:[1, 2, 2]
无解:[1, 2, 5]
无解:[1, 5]
无解:[2, 2, 2]
无解:[2, 2, 5]
无解:[2, 5]
有解:[5]
4

public int rec(int index,int[] coins,int remainder){//1.情况1:剩余金额 < 0 - 无解//2.情况2:剩余金额 > 0 - 继续递归//3.情况3:剩余金额 = 0 - 有解if(remainder < 0){return 0;}else if(remainder == 0){return 1;}else{int count = 0;for(int i = index;i<coins.length;i++){count+=rec(i,coins,remainder-coins[i]);}return count;}}

那这个递归是怎么运作的呢?

/*
//第一次传入 index= 0=>1 处理硬币和剩余金额rec(1,5)    remainder > 0 所以走else逻辑 再循环中的递归是多路递归rec(1,4)rec(1,3)rec(1,2)rec(1,1)rec(1,0) <==  1rec(2,-1) <== 0rec(5,-4) <== 0rec(2,0)   <==1rec(5,-3) <== 0rec(2,1)rec(2,-1) <== 0rec(5,-4) <== 0rec(5,-2)  <== 0rec(2,2)rec(2,0)  <== 1rec(5,-3) <== 0rec(5,-1) <== 0rec(2,5-2=3)rec(2,1)rec(2,-1)  <== 0rec(5,-4)  <== 0rec(5,-2)  <==0rec(5,5-5=0) < ==1*/

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.ListIterator;/*** 零钱兑换* 可以凑成总金额所需的所有组合可能数*/
public class Leetcode518 {public int coinChange(int[] coins, int amount) {return rec(0, coins, amount, new LinkedList<>(), true);}/*** 求凑成剩余金额的解的个数** @param index     当前硬币索引* @param coins     硬币面值数组* @param remainder 剩余金额* @param stack     -* @param first     -* @return 解的个数*/public int rec(int index, int[] coins, int remainder, LinkedList<Integer> stack, boolean first) {if(!first) {//第一次不压栈stack.push(coins[index]);}// 情况1:剩余金额 < 0 - 无解int count = 0;if (remainder < 0) {print("无解:", stack);
//            if(!stack.isEmpty()){
//                stack.pop();
//            }}// 情况2:剩余金额 == 0 - 有解else if (remainder == 0) {print("有解:", stack);
//            if(!stack.isEmpty()){
//                stack.pop();
//            }count = 1;}// 情况3:剩余金额 > 0 - 继续递归else {for (int i = index; i < coins.length; i++) {count += rec(i, coins, remainder - coins[i], stack, false);}}if (!stack.isEmpty()) {stack.pop();}return count;}private static void print(String prompt, LinkedList<Integer> stack) {ArrayList<Integer> print = new ArrayList<>();ListIterator<Integer> iterator = stack.listIterator(stack.size());while (iterator.hasPrevious()) {print.add(iterator.previous());}System.out.println(prompt + print);}public static void main(String[] args) {Leetcode518 leetcode = new Leetcode518();
//        int count = leetcode.coinChange(new int[]{1, 5, 10, 25}, 41);
//        int count = leetcode.coinChange(new int[]{25, 10, 5, 1}, 41);
//        int count = leetcode.coinChange(new int[]{5, 2, 1}, 5);int count = leetcode.coinChange(new int[]{1, 2, 5}, 5);
//        int count = leetcode.change(new int[]{15, 10, 1}, 21);System.out.println(count);}
}

但是这个代码放在leetcode上面跑会超时,因为重复处理了很多次相同的操作

我们可以考虑用记忆法 & 动态规划来优化

我们也可以考虑顺序优化 ==>规模下降明显

/*
[5,2,1]   5
rec(5,5)rec(5,0) <== 1rec(2,3) rec(2,1)rec(2,-1) <==0rec(1,0)  <==1rec(1,1)rec(1,0) <==1rec(1,4)rec(1,3)rec(1,2)rec(1,1)rec(1,0) <==1*/

但即使是这样写在leetcode上也是会 StackOverflowError

class Solution {public int change(int amount, int[] coins1) {int[] coins = sort(coins1);return rec(0,coins,amount);}int rec(int index,int[] coins,int remainder){int count = 0;if(remainder == 0){return 1;}else if(remainder<0){return 0;}else{for(int i = index;i<coins.length;i++){count+=rec(index,coins,remainder);}return count;}}/***传入一个有序的数组a(从小到大排序),返回一个从大到小的数组*@param a 传入的数组(有序)*@return 返回一个数组(从大到小)*/int[] sort(int[] a){int[] temp = a;if(temp.length % 2 ==0){//数组里面的个数为偶数for(int i = 0;i<=temp.length/2;i++){int temp1 = a[i];temp[i] = temp[temp.length-1-i];temp[temp.length-1] = temp1;}}else{//数组里面的个数为奇数for(int i = 0;i<temp.length/2;i++){int temp1 = a[i];temp[i]=temp[temp.length-1-i];temp[temp.length-1-i] = temp1;}}return temp;}
}

import java.util.Arrays;public class Main {public static void main(String[] args) {int[] arr = sort(new int[]{1,2,3});System.out.println(Arrays.toString(arr));//为什么我这么选择是因为用Arrays.sort要将数组转化为Integer[]}/***传入一个有序的数组a(从小到大排序),返回一个从大到小的数组* @param a 传入的数组(有序)* @return 返回一个数组(从大到小)*/public static int[] sort(int[] a){int[] temp = a;if(temp.length%2==0){//数组里面的个数为偶数for (int i = 0; i <= temp.length/ 2; i++) {int temp1 = a[i];temp[i]=temp[temp.length-1-i];temp[temp.length - 1-i] = temp1;}}else{//数组里面的个数为奇数for (int i = 0; i < temp.length / 2; i++) {int temp1 = a[i];temp[i]=temp[temp.length-1-i];temp[temp.length - 1-i] = temp1;}}return  temp;}
}

 动态规划->会在动态规划章节说明

最优解(零钱兑换)- 穷举法 Leetcode 322
import java.util.LinkedList;
import java.util.concurrent.atomic.AtomicInteger;public class Leetcode322 {static int min = -1; // 需要的最少硬币数  2 3public int coinChange(int[] coins, int amount) {rec(0, coins, amount, new AtomicInteger(-1), new LinkedList<>(), true);return min;}// count 代表某一组合 钱币的总数 可变的整数对象public void rec(int index, int[] coins, int remainder, AtomicInteger count, LinkedList<Integer> stack, boolean first) {if (!first) {stack.push(coins[index]);}count.incrementAndGet(); // count++if (remainder == 0) {System.out.println(stack);if (min == -1) {min = count.get();} else {min = Integer.min(min, count.get());}} else if (remainder > 0) {for (int i = index; i < coins.length; i++) {rec(i, coins, remainder - coins[i], count, stack, false);}}count.decrementAndGet(); // count--if (!stack.isEmpty()) {stack.pop();}}public static void main(String[] args) {Leetcode322 leetcode = new Leetcode322();
//        int count = leetcode.coinChange(new int[]{5, 2, 1}, 5);int count = leetcode.coinChange(new int[]{25, 10, 5, 1}, 41);
//        int count = leetcode.coinChange(new int[]{2}, 3);
//        int count = leetcode.coinChange(new int[]{15, 10, 1}, 21);System.out.println(count);}
}
最优解(零钱兑换)- 贪心法 Leetcode 322

自己看看就行因为有些测试样例过不了

假定传过来的数据就是从大到小排序,因为java对int数组从大到小排序比较麻烦
public class Leetcode322 {public int coinChange(int[] coins, int amount) {int remainder = amount;int count = 0;for (int coin : coins) {while (remainder - coin > 0) {remainder -= coin;count++;}if (remainder - coin == 0) {remainder = 0;count++;break;}}if (remainder > 0) {return -1;} else {return count;}}public static void main(String[] args) {Leetcode322 leetcode = new Leetcode322();int count = leetcode.coinChange(new int[]{5, 2, 1}, 5);
//        int count = leetcode.coinChange(new int[]{25, 10, 5, 1}, 41);
//        int count = leetcode.coinChange(new int[]{2}, 3);// 问题1 没有回头,导致找到更差的解
//        int count = leetcode.coinChange(new int[]{15, 10, 1}, 21);  // 问题2 没有回头,导致无解
//        int count = leetcode.coinChange(new int[]{15, 10}, 20);  System.out.println(count);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1409731.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

GPT-ArcGIS数据处理、空间分析、可视化及多案例综合应用

在数字化和智能化的浪潮中&#xff0c;GIS&#xff08;地理信息系统&#xff09;和GPT&#xff08;生成式预训练模型&#xff09;的结合正日益成为推动科研、城市规划、环境监测等领域发展的关键技术。GIS以其强大的空间数据处理、先进的空间分析工具、灵活的地图制作与可视化能…

240 基于matlab的飞行轨迹仿真程序

基于matlab的飞行轨迹仿真程序&#xff0c;多种不同的飞行轨迹&#xff0c;输出经度、纬度、高度三维轨迹&#xff0c;三个方向的飞行速度。程序已调通&#xff0c;可直接运行。 240 飞行轨迹仿真 三维轨迹 飞行速度 - 小红书 (xiaohongshu.com)

论文精读-基于FPGA的卷积神经网络和视觉Transformer通用加速器

论文精读-基于FPGA的卷积神经网络和视觉Transformer通用加速器 优势&#xff1a; 1.针对CNN和Transformer提出了通用的计算映射&#xff08;共用计算单元&#xff0c;通过不同的映射指令&#xff0c;指导数据通路和并行计算&#xff09; 2.非线性与归一化加速单元&#xff0…

【開山安全笔记】WAF略知一二

在工作或面试中&#xff0c;网安从业者经常遇到关于各类安全设备的问题。然而&#xff0c;初学者对于安全设备的工作原理&#xff0c;功能和作用大都没有很深入的了解。基于此背景&#xff0c;開山安全笔记将发表关于安全设备的系列文章。 本篇主要论述防火墙的概念、原理和作…

Java项目:88 springboot104学生网上请假系统设计与实现

作者主页&#xff1a;舒克日记 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 本学生网上请假系统管理员&#xff0c;教师&#xff0c;学生。 管理员功能有个人中心&#xff0c;学生管理&#xff0c;教师管理&#xff0c;班级信息…

virtualbox kafka nat + host-only集群 + windows 外网 多网卡

virtualbox kafka nat + host-only集群 + windows 映射访问 kafka集群搭建背景kafka集群搭建 背景 使用virtualbox搭建kafka集群,涉及到不同网络策略的取舍 首先 桥接 网络虽说 啥都可以,但是涉及到过多ip的时候,而且还不能保证使用的ip不被占用,所以个人选择kafka虚拟机…

手撕spring框架(3)

手撕spring框架&#xff08;3&#xff09; 相关系列 手撕spring框架&#xff08;1&#xff09; 手撕spring框架&#xff08;2&#xff09; InitializingBean 接口详解 什么是 InitializingBean 接口&#xff1f; InitializingBean 接口是 Spring 框架中的一个接口&#xff0c…

服务器远程连接jupyter notebook

目录 服务器远程连接jupyter notebook1、在服务器端安装notebook2、在服务器端的设置Step 1:Step 2:Step 3: 3. 在服务器端运行jupyter4、在windows 上连接远程服务器 参考资料 服务器远程连接jupyter notebook 1、在服务器端安装notebook conda install jupyter notebook 2…

一个C++小程序调试过程记录

Top 20 C Projects With Source Code [2024 Update]https://www.interviewbit.com/blog/cpp-projects/ 这个网页有一些简单的C程序的源码&#xff0c;闲来无事&#xff0c;把第一个程序&#xff08;Bookshop Management System Using C&#xff09;的源码下载了下来。 源文件…

面试:Spring(IOC、AOP、事务失效、循环引用、SpringMVC、SpringBoot的自动配置原理、Spring框架常见注解)

目录 一、Spring的单例Bean是否是线程安全的&#xff1f; 二、什么是AOP 1、介绍 &#xff08;1&#xff09;记录操作日志 &#xff08;2&#xff09;实现Spring中的事务 三、spring中事务失效的场景有哪些&#xff1f; 1、异常捕获处理 2、抛出检查异常 3、非public方…

jupyter notebook导出pdf文件显示不了中文

找到文件index.tex.j2&#xff0c;我的在 C:\Users\Administrator\miniconda3\envs\opencv2\share\jupyter\nbconvert\templates\latex 我安装miniconda3并配置opencv2所需要的环境, 配置前 最后&#xff1a;用文本编辑器打开&#xff0c;修改图中article为ctexart&#xf…

计算机网络 —— 网络层

IP 1. 基本介绍2. IP地址定义3. IP地址分类4. 子网掩码5. 全局地址与私有地址 1. 基本介绍 TCP/IP 协议的心脏是网络层&#xff0c;主要“实现节点之间的通信”&#xff0c;即“点对点(end-to-end)通信”。 网络层包含IP(Internet Protocol)及DNS&#xff08;Domain Name Sys…

设计模式之空对象模式

空对象模式&#xff08;Null Object Pattern&#xff09;也称为零对象模式&#xff0c;是一种设计模式&#xff0c;用于代表空值的对象&#xff0c;而不是返回null。它的目的是让空对象能够像任何其他非空对象一样被使用&#xff0c;从而避免在代码中进行空值检查&#xff0c;提…

Meditron:基于 Llama 完全开源的医学大语言模型

健康危机就在眼前&#xff0c;当医疗资源有限时&#xff0c;每一秒钟都至关重要&#xff01;Meditron 就像一位忠实的医疗助手&#xff0c;提供基于证据的护理建议和情境意识的推荐&#xff0c;帮助医疗工作者在诊断和治疗过程中做出更准确的决策。 在资源有限的医疗环境中&am…

06_电子设计教程基础篇(学习视频推荐)

文章目录 前言一、基础视频1、电路原理3、模电4、高频电子线路5、电力电子技术6、数学物理方法7、电磁场与电磁波8、信号系统9、自动控制原理10、通信原理11、单片机原理 二、科普视频1、工科男孙老师2、达尔闻3、爱上半导体4、华秋商城5、JT硬件乐趣6、洋桃电子 三、教学视频1…

Text-to-SQL小白入门(12)Awesome-Text2SQL开源项目star破1000

项目介绍 项目地址 23年9月份刚开源这个项目&#xff0c;大半年过去了&#xff0c;star数终于破1000啦&#xff0c;决定在知乎更新一下内容&#xff0c;看看内容变化&#xff0c;知乎有上当时项目介绍的链接&#xff1a;追光者&#xff1a;Text-to-SQL小白入门&#xff08;六&…

用LM Studio搭建微软的PHI3小型语言模型

什么是 Microsoft Phi-3 小语言模型&#xff1f; 微软Phi-3 模型是目前功能最强大、最具成本效益的小型语言模型 &#xff08;SLM&#xff09;&#xff0c;在各种语言、推理、编码和数学基准测试中优于相同大小和更高大小的模型。此版本扩展了客户高质量模型的选择范围&#x…

【计算机网络】网络层总结

目录 知识梗概 IP地址 子网划分 IP包头格式 路由 网络层协议 ARP病毒/ARP欺骗 知识梗概 IP地址 IP相关介绍&#xff1a;机器之间需要交流&#xff0c;必须要一个地址才能找到对应的主机&#xff0c;IP地址是主机的一种表示&#xff0c;保证主机之间的正常通信&#xff…

【Mac】Mac安装软件常见问题解决办法

前言 刚开始用Mac系统的小伙伴或者在更新系统版本后运行App的朋友会经常碰到弹窗提示「xxx已损坏&#xff0c;无法打开&#xff0c;您应该将它移到废纸篓」、「打不开xxx&#xff0c;因为Apple无法检查其是否包含恶意软件」、「打不开xxx&#xff0c;因为它来自身份不明的开发…

计算机408备考-数据结构重要知识点-数据结构的定义

【计算机408备考-数据结构重要知识点-数据结构的定义-哔哩哔哩】 https://b23.tv/x7shjNf 数据是信息的载体。数据元素是数据的基本单位。一个数据元素可由若干数据项组成&#xff0c;数据项是构成数据元素的不可分割的最小单位。数据对象是具有相同性质的数据元素的集合&…