当前位置: 首页 > news >正文

用 NLP + Streamlit,把问卷变成能说话的反馈

在这里插入图片描述

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:华为HDE/HDG

我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用、前沿科技资讯、产品评测与使用体验。我特别关注云服务产品评测、AI 产品对比、开发板性能测试以及技术报告,同时也会提供产品优缺点分析、横向对比,并分享技术沙龙与行业大会的参会体验。我的目标是为读者提供有深度、有实用价值的技术洞察与分析。

展菲:您的前沿技术领航员
👋 大家好,我是展菲!
📱 全网搜索“展菲”,即可纵览我在各大平台的知识足迹。
📣 公众号“Swift社区”,每周定时推送干货满满的技术长文,从新兴框架的剖析到运维实战的复盘,助您技术进阶之路畅通无阻。
💬 微信端添加好友“fzhanfei”,与我直接交流,不管是项目瓶颈的求助,还是行业趋势的探讨,随时畅所欲言。
📅 最新动态:2025 年 3 月 17 日
快来加入技术社区,一起挖掘技术的无限潜能,携手迈向数字化新征程!


文章目录

    • 摘要
    • 引言
    • 从问卷到数据:先整理内容
    • 用 NLP 模型做情感分析
      • 安装依赖:
      • 加载模型做情感分析:
    • Streamlit 可视化展示结果
    • 进阶玩法:关键词提取 + 群体画像
    • QA 环节
    • 总结

摘要

传统的问卷分析往往只关注选择题的统计结果,容易忽略填空题背后的真实想法和情绪。本文分享如何用自然语言处理(NLP)技术对志愿者满意度问卷进行语义理解和情感分析,结合 Streamlit 实现可视化展示,让问卷不再只是数字的堆砌,而是情绪和反馈的“放大镜”。

引言

每次做完公益活动,我们都习惯发个问卷来听听大家的声音。但最后看到的,往往是一堆单选题比例和开放题里“看起来都挺满意”的句子。这其实很难帮助组织者真正优化服务体验。

有没有可能让 AI 来“读懂”这些问卷?比如它能告诉我们:“大部分人对组织效率满意,但有人对时间安排表达了负面情绪”?有了情感分析、语义提取这些 NLP 工具,答案是肯定的。

从问卷到数据:先整理内容

在开始处理之前,我们先准备好一份包含以下字段的问卷数据(可用 Excel 或 CSV):

问卷编号满意度打分(1-5)主观评价文本
15很棒的体验,组织很周到!
23志愿者太多,感觉没安排好任务
34整体还不错,就是有点赶

我们重点处理的是“主观评价文本”字段。

用 NLP 模型做情感分析

我们这里使用 transformers 里的 distilbert-base-uncased-finetuned-sst-2-english 模型(也可以替换成 DeepSeek 或 OpenAI 的 API 模型):

安装依赖:

pip install transformers torch pandas streamlit

加载模型做情感分析:

from transformers import pipeline
import pandas as pd# 读取问卷数据
df = pd.read_csv("questionnaire.csv")# 加载情感分析模型
classifier = pipeline("sentiment-analysis")# 对每条文本进行分析
df["情绪判断"] = df["主观评价文本"].apply(lambda x: classifier(x)[0]['label'])

这样我们就拿到了每条文本的情绪标签,是正面(POSITIVE)还是负面(NEGATIVE)。

Streamlit 可视化展示结果

我们用 Streamlit 做一个小前端页面,让大家能方便地看到整体结果分布。

import streamlit as st
import matplotlib.pyplot as pltst.title("志愿者满意度问卷分析")# 加载情绪统计
emotion_counts = df["情绪判断"].value_counts()
st.subheader("情绪分布图")
st.bar_chart(emotion_counts)# 展示正负面例句
st.subheader("正面反馈示例")
st.write(df[df["情绪判断"] == "POSITIVE"]["主观评价文本"].head(5).tolist())st.subheader("负面反馈示例")
st.write(df[df["情绪判断"] == "NEGATIVE"]["主观评价文本"].head(5).tolist())

运行:

streamlit run app.py

就可以打开可视化页面啦。

进阶玩法:关键词提取 + 群体画像

我们可以接着做关键词提取,比如用 keyBERT,也可以把满意度得分和情绪标签一起结合,做个简单的聚类分析。

如果愿意连接 OpenAI / DeepSeek 等大模型,还能做更复杂的总结,比如:

  • 自动生成问卷摘要

  • 提出优化建议(基于负面情绪聚类)

QA 环节

Q: 文本比较短,模型能分析准确吗?
A: 情绪分析在短文本里反而更容易表现出倾向性,只要模型训练得好,还是比较靠谱的。但也建议人工抽样验证结果。

Q: 可以支持中文吗?
A: 当然可以!你只需要加载支持中文的模型,例如 uer/roberta-base-finetuned-jd-binary-chinese,并保证问卷字段是中文内容。

Q: 处理速度慢怎么办?
A: 本地部署可以开多线程,或者考虑批量处理。大模型可以替换为轻量级版本如 FastText、TextBlob 等。

总结

一份问卷真正的价值,在于“听懂人话”。通过情感分析和 NLP 技术,我们能更真实地理解志愿者的体验,用数据驱动服务优化。而 Streamlit 这样的轻量级前端工具,也让分析结果更易于分享和解读。

后续可以引入知识图谱、多轮对话系统,让志愿者填写问卷时也能感受到智能陪伴,或者在问卷分析中加入跨时间趋势分析,更好地为公益项目服务。

http://www.xdnf.cn/news/13627.html

相关文章:

  • 红宝书第五十一讲:Web Components:创造你自己的HTML标签
  • 习题2.3 数列求和-加强版
  • PHP发送邮件
  • 【刷题Day19】HTTP的各个版本(浅)
  • 记录git stash误删除恢复方法
  • 探索 JavaScript 中的 Promise 高级用法与实战
  • 什么是MMOE?
  • 坐标上海,20~40K的面试强度
  • Android Studio 常见报错
  • 计算机网络——应用层
  • 济南通过首个备案生活服务大模型,打造行业新标杆
  • 【人工智能】Prompt攻击与防范策略总结
  • 2025年03月中国电子学会青少年软件编程(Python)等级考试试卷(三级)答案 + 解析
  • ELF2开发板的ubuntu系统的ax200 wifi配网
  • Vue 3.0 Composition API 与 Vue 2.x Options API 的区别
  • 8.Rust+Axum 数据库集成实战:从 ORM 选型到用户管理系统开发
  • 2025MathorcupC题 音频文件的高质量读写与去噪优化 保姆级教程讲解|模型讲解
  • Docker中镜像、容器、仓库三者之间的关系
  • 第 8 期:条件生成 DDPM:让模型“听话”地画图!
  • Hadoop的三大结构及各自的作用?
  • TDengine Restful 接口API
  • excel解析图片pdf附件不怕
  • ESP8266简单介绍
  • 2025年山东燃气瓶装送气工考试真题练习
  • MCP协议量子加密实践:基于QKD的下一代安全通信(2025深度解析版)
  • 从数字化到智能化,百度 SRE 数智免疫系统的演进和实践
  • MCP(Model Context Protocol 模型上下文协议)科普
  • vue 中formatter
  • 2025-04-18 李沐深度学习3 —— 线性代数
  • yarn的三大组件及各自作用