【超级详细】基于Zynq FPGA对雷龙SD NAND的测试

在这里插入图片描述

目录

    • 一、SD NAND特征
      • 1.1 SD卡简介
      • 1.2 SD卡Block图
    • 二、SD卡样片
    • 三、Zynq测试平台搭建
      • 3.1 测试流程
      • 3.2 SOC搭建

一、SD NAND特征

1.1 SD卡简介

雷龙的SD NAND有很多型号,在测试中使用的是CSNP4GCR01-AMW与CSNP32GCR01-AOW。芯片是基于NAND FLASH和 SD控制器实现的SD卡。具有强大的坏块管理和纠错功能,并且在意外掉电的情况下同样能保证数据的安全。

其特点如下:

接口支持SD2.0 2线或4线;

电压支持:2.7V-3.6V;

默认模式:可变时钟速率0 - 25MHz,高达12.5 MB/s的接口速度(使用4条并行数据线)

高速模式:可变时钟速率0 - 50MHz,高达25 MB/s的接口速度(使用4条并行数据线)

工作温度:-40°C ~ +85°C

存储温度:-55°C ~ +125°C

待机电流小于250uA

修正内存字段错误;

内容保护机制——符合SDMI最高安全标准

SDNAND密码保护(CMD42 - LOCK_UNLOCK)

采用机械开关的写保护功能

内置写保护功能(永久和临时)

应用程序特定命令

舒适擦除机制

该SD卡支持SDIO读写和SPI读写,最高读写速度可达25MB/s,实际读写速度要结合MCU和接口情况实测获得。通常在简单嵌入式系统并对读写速度要求不高的情况下,会使用SPI协议进行读写。但不管使用SDIO还是SPI都需要符合相关的协议规范,才能建立相应的文件系统;

1.2 SD卡Block图

SD卡Block图
在这里插入图片描述

该SD卡封装为LGA-8;引脚分配与定义如下;

在这里插入图片描述

SD卡封装为LGA-8引脚分配与定义

二、SD卡样片

与样片同时寄来的还有转接板,转接板将LGA-8封装的芯片转接至SD卡封装,这样只需将转接板插入SD卡卡槽即可使用。

在这里插入图片描述:

CS创世SD NAND转接板

在这里插入图片描述

三、Zynq测试平台搭建

测试平台为 Xilinx 的Zynq 7020 FPGA芯片;

板卡:Digilent Zybo Z7

Vivado版本:2018.3

文件系统:FATFS

SD卡接口:SD2.0

3.1 测试流程

本次测试主要针对4G和32G两个不同容量的SD卡,在Zynq FPGA上搭建SD卡读写回路,从而对SD卡读写速度进行测试,并检验读写一致性;

测试流程:

进入测试程序前,首先会对SD卡初始化并初始化建立FATFS文件系统,随后进入测试SD卡测试程序,在测试程序中,会写入一定大小的文件,然后对写入文件的时间进行测量,得到写入时间;然后再将写入的文件读出,测量获得读出时间,并将读出数据与写入数据相比较,检测是否读写出错。

通过写入时间、读出时间可计算得到写入速度、读出速度;将以上过程重复100次并打印报告。
  在这里插入图片描述

在Zynq FPGA上搭建SD卡读写回路

3.2 SOC搭建

硬件搭建框图如下,我们在本次系统中使用PS端的SDIO接口来驱动SD NAND芯片,并通过UART向PC打印报告;
在这里插入图片描述

PL端的硬件搭建也很简单,只需一个Timer定时器来做时间测量;

SD NAND(SD卡)PL端的硬件搭建

我们直接使用Zybo板卡文件创建一个工程,工程会将Zybo具有的硬件资源配置好;
在这里插入图片描述

Zybo板卡文件创建

首先点击setting->IP->Repository->+;添加Timer IP核的路径,Timer IP核会在工程中给出;
在这里插入图片描述

SOC搭建

点击Create Block Design创建BD工程
在这里插入图片描述

Create Block Design创建BD工程

在创建的过程中添加Zynq 内核;
在这里插入图片描述

SD NAND添加Zynq 内核

   由于我们使用了板卡文件,所以内核IP是配置好的,我们只需稍作修改即可,如果是其他板卡,则需要自行配置DDR等配置;

双击内核IP,点击Clock Configuration->PL Fabric Clocks,将FCLK_CLK0的时钟频率修改为100Mhz
  在这里插入图片描述

添加TimerA IP;
在这里插入图片描述

依次点击上方的自动设计,完成SOC搭建;
在这里插入图片描述

SOC搭建

点击BD设计,并创建顶层文件
在这里插入图片描述

SD NAND的SOC搭建

生成比特流文件;
在这里插入图片描述

SD NAND的SOC搭建 比特流文件

   在生成比特流文件后,将其导入SDK;

点击Export->Export Hardware,导出硬件;然后点击Launch SDK打开SDK进行软件设计;
  在这里插入图片描述
在这里插入图片描述

Export->Export Hardware,导出硬件Launch SDK打开SDK进行软件设计

四、软件搭建
  在SDK中新建一个空白工程;

点击file -> new -> Application project;
  在这里插入图片描述

SD NAND软件搭建

在新建的过程中创建一个main.c文件,并在里面编写测试程序如下:

在每次读写开始前,通过TimerA0_start()函数开始计时,在读写结束后可以通过TimerA0_stop()结束计时,从而测得消耗时间。

相应的Timer驱动函数在user/TimerA_user.c中定义;

#include "xparameters.h"    /* SDK generated parameters */#include "xsdps.h"        /* SD device driver */#include "xil_printf.h"#include "ff.h"#include "xil_cache.h"#include "xplatform_info.h"#include "time.h"#include "../user/headfile.h"#define    PACK_LEN       32764static FIL fil;        /* File object */static FATFS fatfs;static char FileName[32] = "Test.txt";static char *SD_File;char DestinationAddress[PACK_LEN] ;char txt[1024];char test_buffer[PACK_LEN];void TimerA0_init(){TimerA_reset(TimerA0);//reset timerA deviceTimerA_Set_Clock_Division(TimerA0,100);//divide clock as 100000000/100 = 1MhzTimerA_Stop_Counter(TimerA0);//stop timerA}void TimerA0_start(){TimerA_SetAs_CONTINUS_Mode(TimerA0);}void TimerA0_stop(){TimerA_Stop_Counter(TimerA0);}uint32 SDCard_test(){uint8 Res;uint32 NumBytesRead;uint32 NumBytesWritten;uint32 BuffCnt;uint8 work[FF_MAX_SS];uint32 take_time=0;uint32 speed = 0;uint32 test_time = 0;uint32 w_t=0;uint32 r_t=0;float wsum = 0;float rsum = 0;TCHAR *Path = "0:/";for(int i=0;i<PACK_LEN;i++){test_buffer[i] = 'a';}Res = f_mount(&fatfs, Path, 0);if (Res != FR_OK) {return XST_FAILURE;}Res = f_mkfs(Path, FM_FAT32, 0, work, sizeof work);if (Res != FR_OK) {return XST_FAILURE;}SD_File = (char *)FileName;Res = f_open(&fil, SD_File, FA_CREATE_ALWAYS | FA_WRITE | FA_READ);if (Res) {return XST_FAILURE;}Res = f_lseek(&fil, 0);if (Res) {return XST_FAILURE;}while(1){TimerA_reset(TimerA0);TimerA0_start();Res = f_write(&fil, (const void*)test_buffer, PACK_LEN,&NumBytesWritten);TimerA0_stop();take_time = TimerA_Read_Counter_Register(TimerA0);w_t+=take_time;xil_printf("--------------------------------\n");xil_printf("take time:%d us\n",take_time);speed = PACK_LEN*(1000000/((float)(take_time)));sprintf(txt,"write speed:%.2f MB/s\n",(float)(speed)/1024/1024);wsum = wsum+speed;xil_printf(txt);xil_printf("--------------------------------\n");if (Res) {return XST_FAILURE;}Res = f_lseek(&fil, 0);if (Res) {return XST_FAILURE;}TimerA_reset(TimerA0);TimerA0_start();Res = f_read(&fil, (void*)DestinationAddress, PACK_LEN,&NumBytesRead);TimerA0_stop();take_time = TimerA_Read_Counter_Register(TimerA0);r_t+=take_time;xil_printf("--------------------------------\n");xil_printf("take time:%d us\n",take_time);speed = PACK_LEN*(1000000/((float)(take_time)));sprintf(txt,"read speed:%.2f MB/s\n",(float)(speed)/1024/1024);rsum = rsum+speed;xil_printf(txt);xil_printf("--------------------------------\n");if (Res) {return XST_FAILURE;}for(BuffCnt = 0; BuffCnt < PACK_LEN; BuffCnt++){if(test_buffer[BuffCnt] != DestinationAddress[BuffCnt]){xil_printf("%dno",BuffCnt);return XST_FAILURE;}}xil_printf("test num:%d data check right!\n",test_time+1);test_time++;if(test_time==100){sprintf(txt,"Total write: %.2f KB,Take time:%.2f ms, Write speed:%.2f MB/s\n",PACK_LEN*100/1024.0,w_t/100.0/1000.0,wsum/100/1024/1024);xil_printf(txt);sprintf(txt,"Total read: %.2f KB,Take time:%.2f ms, Read speed:%.2f MB/s\n",PACK_LEN*100/1024.0,r_t/100.0/1000.0,rsum/100/1024/1024);xil_printf(txt);Res = f_close(&fil);if (Res) {return XST_FAILURE;}return 0;}}}int main(void){TimerA0_init();SDCard_test();xil_printf("finish");return 0;}

五、测试结果
  经测试,两种型号的芯片读写速度如下图表所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

其SD NAND的读写速度随着读写数据量的增加而增加,并且读速率大于写速率,这符合SD卡的特性;

对比两种型号SD NAND芯片,发现CSNP32GCR01-AOW型号具有更高的读写速度;

SD NAND的读写速度数据

SD NAND的写入速度数据SD NAND的读出速度数据

六、总结
  本来打算拿这些样片去试试信息安全领域是否有所应用,但发现其似乎内置了复位或初始化,导致无法提取上电时的不确定值,故无法提取该SD NAND的物理不可克隆特性,所以这方面的测试无法进行;

对于芯片正常读写的测试结果,还是很让人满意的,芯片的价格也很合理。并且LGA-8封装更适合无卡槽的嵌入式开发板设计,在一定的应用领域有着简化硬件设计、减小硬件面积的功能。

最后贴上测试工程的链接,还迎复现实验: https://gitee.com/gewenjie_host/sd_-nand_-zynq700_test

详细了解可以点击这里:点我查看

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/10679.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

linux物理内存管理:node,zone,page

一、总览 对于物理内存内存&#xff0c;linux对内存的组织逻辑从上到下依次是&#xff1a;node&#xff0c;zone&#xff0c;page&#xff0c;这些page是根据buddy分配算法组织的&#xff0c;看下面两张图&#xff1a; 上面的概念做下简单的介绍&#xff1a; Node&#xff1a…

STM32-Flash闪存

目录 一、简介 1、闪存模块组织 2、FLASh基本结构 3、FLash写入和读取操作 4、编程流程 5、选项字节格式 6、选项字节编程步骤 二、读写芯片内部FLASH编程 三、器件电子签名 1、简介 2、编程实现 一、简介 STM32F1系列的FLASH包含程序存储器、系统存储器和选项字节…

数据结构之带头双向循环链表

前言&#xff1a;前面我们实现了顺序表和单链表&#xff0c;这次来实现一个结构更复杂的链表-----带头双向循环链表。不要被它的名字吓到哦&#xff0c;只是结构复杂而已&#xff0c;它的结构更有利于代码的实现。 1 双向循环链表的介绍 有了单链表的基础&#xff0c;要实现这…

10个最常用的Python包,程序员必备!

世界上有超过200,000个Python程序包&#xff08;这只是基于官方的Python程序包索引PyPI托管的程序包&#xff09;。 这就引出了一个问题&#xff1a;拥有这么多的软件包&#xff0c;每个Python程序员都需要学习哪些软件包是最重要的&#xff1f; 为了帮助回答这个问题&#x…

线上问题的排查-java死锁问题如何排查

这里写目录标题 1.java死锁如何排查2.具体步骤1.1识别死锁现象1.2收集线程转储1.3分析线程转储1.4代码审查1.5重现问题1.6使用调试工具1.7.优化和验证 3. 解决方案总结 1.java死锁如何排查 在Java应用程序中&#xff0c;死锁是一个经典的并发问题&#xff0c;它会导致线程永久阻…

shodan(4-5)

以下笔记学习来自B站泷羽Sec&#xff1a; B站泷羽Sec 1. 查看自己的出口IP 可以知晓自己是哪个IP连接的公网 shodan myip2. 指定标题搜索 http.title:内容搜索被挂黑页的网页&#xff1a;获得标题中含有hacked by的IP shodan search --limit 10 --fields ip_str,port htt…

三种风格截然不同的实验室工控界面

三种风格截然不同的实验室工控界面各具特色。一种可能是简洁现代风&#xff0c;以简洁的线条、纯净的色彩和直观的图标&#xff0c;呈现出高效与专业。 另一种或许是科技未来风&#xff0c;运用炫酷的光影效果和立体感十足的设计&#xff0c;展现实验室的前沿科技感。 还有一…

Redis如何保证数据不丢失(可靠性)

本文主要以学习为主&#xff0c;详细参考&#xff1a;微信公众平台 Redis 保证数据不丢失的主要手段有两个&#xff1a; 持久化 多机部署 我们分别来看它们两的具体实现细节。 1.Redis 持久化 持久化是指将数据从内存中存储到持久化存储介质中&#xff08;如硬盘&#xf…

STM32F405RGT6单片机原理图、PCB免费分享

大学时机创比赛时画的板子&#xff0c;比到一半因为疫情回家&#xff0c;无后续&#xff0c;&#xff0c;&#xff0c;已打板验证过&#xff0c;使用stm32f405rgt6做主控 下载文件资源如下 原理图文件 pcb文件 外壳模型文件 stm32f405例程 功能 以下功能全部验证通过 4路…

“穿梭于容器之间:C++ STL迭代器的艺术之旅”

引言&#xff1a; 迭代器&#xff08;Iterator&#xff09;是C STL&#xff08;标准模板库&#xff09;中非常重要的一部分&#xff0c;它提供了一种统一的方式来遍历容器中的元素。无论容器是数组、链表、树还是其他数据结构&#xff0c;迭代器都能够以一致的方式访问这些数据…

jmeter常用配置元件介绍总结之用linux服务器压测

系列文章目录 安装jmeter jmeter常用配置元件介绍总结之用linux服务器压测 1.编写测试脚本2.执行测试脚本 1.编写测试脚本 在linux服务器上进行压测&#xff0c;由于是没有界面的&#xff0c;因此我们可以先在界面上把压测脚本写好&#xff1a; 如图&#xff1a;我这里简单的写…

Ubuntu 的 ROS 操作系统安装与测试

引言 机器人操作系统&#xff08;ROS, Robot Operating System&#xff09;是一个用于开发机器人应用的开源框架&#xff0c;它提供了一系列功能丰富的库和工具&#xff0c;能够帮助开发者构建和控制机器人。 当前&#xff0c;ROS1的最新版本为Noetic Ninjemys&#xff0c;专为…

计算机组成原理——编码与纠错(汉明编码)

校验码放在2^x次方的位置——即1&#xff0c;2&#xff0c;4——将检测位按序排列p3p2p1 汉明编码从左到右数某个位置位1&#xff08;位数&#xff09;&#xff0c;就表示第几组 奇偶校验 例题 纠错过程 汉明编码的最小距离是3

fabric操作canvas绘图(1)共32节

对于前端而言&#xff0c;离不开canvas就像鱼离不开水&#xff0c;前端canvas神器fabric你值得拥有&#xff01;接下来我们就来一步步揭开她的面纱。 一、fabric的理解 用原生的canvas来实现&#xff0c;代码量会比较大&#xff0c;而且还要处理很多细节&#xff0c;而Fabric…

C++ 内存分布及 new , delete 分配问题( ~~~ 面试重要 ~~~)

文章目录 前言一、内存分布二、new 、delete 分配问题总结 前言 本篇文章笔者将会对 C 中的内存问题简单的讲解 , 同时对 new , delete 的面试题进行重点讲解. 一、内存分布 ● C语言和C 分布情况是一样的, 如下 : ● 栈 ○ 栈 的管理是由编译器自动管理 , 不需要我们人为做…

数据结构-哈夫曼树

一.什么是哈夫曼树 不同搜索树的效率是不一样的,根据不同的频率构造效率比较好或者最好的搜索树就是哈夫曼树 二.哈夫曼树的定义 将带权路径的长度降低最低 每个叶子节点到根节点的距离乘权值&#xff0c;再全都加起来就得到了WPL值 第一颗二叉树:从上到下计算 5x14x23x32x41…

双11精选网络安全书单:打造数字世界的钢铁长城!

&#x1f91f; 基于入门网络安全/黑客打造的&#xff1a;&#x1f449;黑客&网络安全入门&进阶学习资源包 &#x1f31f;双11火热来袭&#xff0c;网络安全书单推荐&#x1f680; 随着数字化浪潮的汹涌澎湃&#xff0c;网络安全已经成为了每个从业者不可回避的重要议…

WebGUI之Gradio:Gradio 5的简介、安装和使用方法、案例应用之详细攻略

WebGUI之Gradio&#xff1a;Gradio 5的简介、安装和使用方法、案例应用之详细攻略 目录 Gradio 5的简介 1、Gradio的适用场景 2、Gradio 5 的主要改进包括&#xff1a; Gradio 5的安装和使用方法 1、安装和使用方法 2、使用方法 2.1、文本内容 (1)、简单的输入/输出组件…

初始Python篇(5)—— 集合

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a; Python 目录 集合 相关概念 集合的创建与删除 集合的操作符 集合的相关操作方法 集合的遍历 集合生成式 列表、元组、字典、集合的…

探索Python的Shell力量:Plumbum库揭秘

文章目录 探索Python的Shell力量&#xff1a;Plumbum库揭秘第一部分&#xff1a;背景介绍第二部分&#xff1a;Plumbum是什么&#xff1f;第三部分&#xff1a;如何安装Plumbum&#xff1f;2. 创建管道3. 重定向4. 工作目录操作5. 前台和后台执行 第五部分&#xff1a;场景应用…