flink 的 Barrier 对齐 的优劣详解:

        Barrier 对齐(Barrier Alignment) 是分布式数据流系统中一个重要的机制,特别是在处理 状态一致性故障恢复 和 容错 时起着关键作用。它主要用于确保在复杂的多并行子任务场景下,数据流的所有分支能够在某个时间点上达到一致的状态,这个时间点就是所谓的 Barrier。在分布式流式处理系统中,典型的应用场景包括 Apache Flink 等。

        为了理解 Barrier 对齐的优点和潜在的危害,需要从底层工作原理出发,详细分析 Barrier 对齐的机制。


1. 什么是 Barrier 对齐?

        在流式数据处理系统中,数据是以事件的形式不断流入的。为了保证数据处理的 容错性和一致性,需要引入某种机制来记录系统的状态,确保在系统发生故障时可以从之前的某个一致状态恢复。

        Barrier 是 Flink 中的 检查点(Checkpoint)机制 的一部分。检查点 Barrier 是在数据流中插入的一种特殊的标记,用来指示在某个时间点,流经系统的所有数据都达到了一个一致的状态。

Barrier 对齐的过程

        Barrier 对齐是 Flink 用于实现精确一次(Exactly Once)处理语义的一部分。其大致过程如下:

  1. Barrier 插入:Flink 会在数据流中周期性地插入 Barrier,这些 Barrier 会在数据流中随数据流动。
  2. Barrier 捕获:当一个算子接收到 Barrier 时,它会记录当前的状态,并等待来自所有上游并行分支的 Barrier。
  3. Barrier 对齐:在算子收到来自所有上游分支的 Barrier 后,它才会继续处理数据,确保所有输入都在相同的时间点上对齐。
  4. 状态保存:一旦所有分支对齐完毕,算子会将状态快照保存到外部存储中,以确保在故障发生时能够从这个状态点进行恢复。

2. Barrier 对齐的优点

Barrier 对齐在流式处理系统中的优点主要体现在以下几个方面:

2.1 精确一次语义(Exactly Once Processing)

        Barrier 对齐的最大优势是它能够实现 精确一次处理语义。在没有 Barrier 对齐的情况下,当系统发生故障时,很难保证所有流在同一时间点上达到一致状态,这可能导致一些数据被重复处理或者丢失。而通过 Barrier 对齐,系统可以确保在故障恢复时,所有状态和流数据都从同一个检查点开始,因此保证了每个事件仅被处理一次。

2.2 容错机制

        Barrier 对齐使得系统能够通过定期的状态快照实现强大的容错性。当系统在处理流数据时,随着 Barrier 的流动,系统不断保存其状态。若系统中某个节点发生故障,它可以回滚到最近的 Barrier 一致状态,保证处理不会因为故障丢失数据或造成数据不一致。

2.3 数据一致性

        Barrier 对齐保证了流式处理系统中 所有并行任务的状态一致性。无论数据是如何分布的,各个并行子任务都会在 Barrier 到达时对齐,确保所有任务在相同的状态快照下进行处理。

2.4 事件顺序一致性

        通过 Barrier 对齐,系统确保了来自不同流分支的数据按照正确的顺序进行处理,避免了由于数据流速度不同或者乱序传输导致的结果不一致问题。


3. Barrier 对齐的危害

        尽管 Barrier 对齐可以带来一致性和容错性,但在实际系统中,它也可能带来一些负面影响,特别是在高吞吐量、低延迟的流处理场景中。

3.1 数据流阻塞与延迟

        Barrier 对齐的一个主要缺点是它可能导致 数据流的阻塞 和 延迟增加。在对齐过程中,当算子收到部分输入分支的 Barrier 时,它必须等待其他所有分支的 Barrier 到达才能继续处理。这意味着如果某些分支的数据流速度较慢,系统会出现阻塞现象,所有的数据处理都会因此停滞,直到所有分支都完成对齐。这在流速不均衡的场景中(例如,某些分支数据延迟较大)会显著增加延迟。

        这种情况被称为 反压(Backpressure) 问题,反压会导致整个流处理管道变慢,严重影响吞吐量和延迟。

if (!receivedAllBarriers()) {blockFurtherProcessing();
}
3.2 资源开销

        在 Barrier 对齐期间,系统需要 缓冲 来自较快分支的数据,以等待较慢分支的 Barrier 到达。这就意味着必须分配额外的内存资源来存储尚未处理的数据。当流速差异过大时,缓冲区的大小可能会迅速膨胀,导致内存开销剧增。

bufferPool.addIncomingData(dataChunk);
if (dataChunk.isDelayed()) {increaseBufferSize();
}

        如果系统的内存资源不足,可能会导致频繁的垃圾回收(GC)或 OOM(内存溢出),这进一步降低了系统的吞吐量和性能。

3.3 复杂的实现

        Barrier 对齐涉及复杂的调度机制,特别是当流处理系统中存在多个并行计算任务时,需要协调每个子任务的状态和 Barrier 的传播,这增加了系统的复杂性和维护成本。在实现和优化方面,Barrier 对齐的机制也会增加开发难度和调试工作量。

3.4 高负载场景下的性能瓶颈

        在高负载、大规模数据流场景下,Barrier 对齐会成为系统性能的瓶颈。即使在低延迟的数据处理系统中,Barrier 对齐过程会引入额外的 同步开销,特别是在网络状况不佳或流处理管道较长的情况下,这种性能损耗更加显著。


4. 解决方案与优化

        为了减轻 Barrier 对齐带来的危害,流处理系统通常会提供一些优化措施:

4.1 异步 Barrier 对齐

        为了减少阻塞,Flink 允许使用 异步 Barrier 对齐(Asynchronous Barrier Alignment),使得即使没有完成 Barrier 对齐,某些分支也可以继续处理数据,避免了对齐过程中的完全阻塞。

  • 在异步对齐中,系统仍然等待所有分支的 Barrier 到达,但不会完全暂停数据处理。
  • 这种方式在某些场景下可以显著减少等待时间,从而降低系统延迟。
if (!receivedAllBarriers()) {// 异步处理未对齐的数据processRemainingDataAsync();
}

4.2 增加分区并行度

        通过增加数据流的 并行度,可以减少单个流的处理负担,从而提高处理效率,减少等待 Barrier 对齐的时间。这种方式适用于大规模数据流的场景,特别是在输入流量较大时,可以通过扩展来提升整体处理能力。

4.3 动态缓冲区管理

        通过引入 动态缓冲区管理 机制,系统可以根据流速的变化动态调整缓冲区大小,避免因缓冲区溢出导致的内存问题。可以通过根据流量的快慢动态扩展或收缩缓冲区,从而减轻 Barrier 对齐带来的资源消耗。


5. 源码分析要点总结

        在 Flink 的源代码中,Barrier 对齐的实现体现在 StreamTask 和 InputGate 的控制流逻辑中。特别是 BarrierHandler 是处理 Barrier 对齐的重要组件。

主要代码路径分析
  1. Barrier 的捕获
    每个数据流分支都会通过 InputGate 捕获 Barrier。当一个输入分支收到 Barrier 时,它会暂停数据处理,直到所有输入流的 Barrier 都到达。

    public void processBarrier(CheckpointBarrier barrier) {barrierHandler.processBarrier(barrier);
    }
    
  2. 对齐过程
    BarrierHandler 会记录每个输入流的 Barrier 状态,直到所有输入流的 Barrier 对齐。

    if (receivedAllBarriers()) {onAllBarriersReceived();
    }
    

  3. 状态保存
    当所有 Barrier 对齐后,Flink 会将当前的任务状态保存到外部存储,用于将来的恢复。

    stateSnapshot.saveStateToExternalStorage();
    


总结

        Barrier 对齐是实现流处理系统一致性和容错性的重要机制,它确保了分布式流计算中多个并行任务的状态同步和事件顺序的一致性。然而,Barrier 对齐也会带来一些负面影响,如增加延迟、内存消耗和复杂性等。在实际系统中,需要根据具体的应用场景来权衡一致性和性能之间的关系,并结合异步对齐、动态缓冲区等优化手段来减轻其影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/149805.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C++网络编程之网络模型

概述 所谓网络模型,是指一组定义了网络通信功能和行为的规则和标准。这些模型通过将网络通信功能分解成不同的层次,使得网络通信更加模块化,也更易于理解和实施。每一层都有其特定的功能,通过层与层之间的交互,确保数据…

基于Qt5.12.2开发 MQTT客户端调试助手

项目介绍 该项目是一个基于 Qt 框架开发的桌面应用程序,主要用于与 MQTT 服务器进行连接和通信。通过该应用,用户可以连接到 MQTT 服务器,订阅主题、发布消息并处理接收到的消息。项目使用 QMqttClient 类来实现 MQTT 协议的客户端功能&…

代码随想录Day17 图论-2

103. 水流问题 本题思路很简单 要求我们找到可以满足到达两个边界的单元格的坐标 有一个优化的思路就是 我们从边界的节点向中间遍历 然后用两个数组表示 一个是第一组边界的数组 一个是第二边界的数组 如果两个数组都遍历到了某一个单元格 就说明该单元格时满足题目要求的 #…

初识Java(六)(一维数组)(自己学习整理的资料)

目录 一.复习题 二.数组 三.一维数组 四.数组排序 五.数组的插入和删除 1.插入元素 插入元素案例 2.删除元素 删除元素案例 六.顺序查找 顺序查找案例 七.二分查找 二分查找案例 八.冒泡排序 笔记 一.复习题 (一)求S1!2&#x…

微软宣称其新工具可纠正人工智能幻觉 但专家依然对此表示怀疑

人工智能经常胡言乱语,微软现在说它有办法解决这个问题,但我们有理由对此持怀疑态度。微软今天发布了一项名为"更正"(Correction)的服务,它可以自动修改人工智能生成的与事实不符的文本。Correction 首先会标…

Golang | Leetcode Golang题解之第435题无重叠区间

题目&#xff1a; 题解&#xff1a; func eraseOverlapIntervals(intervals [][]int) int {n : len(intervals)if n 0 {return 0}sort.Slice(intervals, func(i, j int) bool { return intervals[i][1] < intervals[j][1] })ans, right : 1, intervals[0][1]for _, p : ra…

js实现多行文本控件textarea,根据文本内容自适应窗口全部显示

概述 本人在使用html控件textarea&#xff0c;多行显示的时候&#xff0c;希望根据后台实际的文本&#xff0c;来全部显示文本内容&#xff0c;而不用再去操作滚动条查看全部文本。 本功能实现的难点在于&#xff0c;计算当前文本显示有多少行。 软件环境 编辑器&#xff1a…

使用 UWA Gears 测试小游戏性能

UWA Gears 是UWA最新发布的无SDK性能分析工具。针对移动平台&#xff0c;提供了实时监测和截帧分析功能&#xff0c;帮助您精准定位性能热点&#xff0c;提升应用的整体表现。 随着小游戏的规模和用户量持续增长&#xff0c;玩家对于小游戏的性能要求也越来越高。为了能够给玩…

现代桌面UI框架科普及WPF入门1

现代桌面UI框架科普及WPF入门 文章目录 现代桌面UI框架科普及WPF入门桌面应用程序框架介绍过时的UI框架MFC (Microsoft Foundation Class)缺点 经典的UI框架**WinForms****QT****WPF** 未来的UI框架**MAUI****AvaloniaUI** WPF相对于Winform&#xff0c;QT&#xff0c;MFC的独立…

1.1 elasticsearch分布式集群基本搭建(centos7.x + elaticsearch7.11.1)

【1】分布式分片集群基础概念 【1.1】ES的分布式集群有什么用&#xff1f; 高可用 高可用(High Availability)是分布式系统架构设计中必须考虑的因素之一&#xff0c;它通常是指&#xff0c;通过设计减少系统不能提供服务的时间。如果系统每运行100个时间单位&#xff0c;会有…

ubuntu22.04磁盘挂载(多磁盘和单磁盘挂载)

多磁盘挂载到同一个目录 # 如果没有安装逻辑卷管理系统工具sudo apt install lvm2 # 查看磁盘分区sudo fdisk -l # 新建物理卷sudo pvcreate /dev/nvme0n1 /dev/nvme1n1 # 查看现有物理卷信息sudo pvdisplay # 新建物理卷sudo vgcreate dnyjy_vg /dev/nvme0n1 /dev/nvme1n1…

微服务之服务保护

Sentinel引入Java项目中 一&#xff1a;安装Sentinel 官网地址&#xff1a;https://github.com/alibaba/Sentinel/releases 二&#xff1a;安装好后在sentinel-dashboard.jar所在目录运行终端 三&#xff1a;运行命令&#xff0c;端口自己指定 java -Dserver.port8090 -Dcs…

Unity 热更新(HybridCLR+Addressable)-资源更新

七、资源更新 创建一个叫Aot的文件夹&#xff0c;用来存放不会热更新的资源 这个修改为第三个 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/b8be5e6465184ad5ad6173c6870bfa06.png 这个是更新 在更新或者打包时遇到端口被占的报错&#xff0c;不用理会&#xf…

frp内网穿透常见问题

Frp编译和部署比较复杂&#xff0c;多端口映射时或者连接数多的情况下会出现不稳定的现象&#xff0c;不适合小白使用&#xff0c;而且仅是上一代的内网穿透技术&#xff0c;生产环境使用建议选择稳定性比较高的产品&#xff0c;如神卓互联、花生壳等&#xff0c;都是采用C语言…

Springboot原理之bean的依赖功能、自动配置

1. Bean管理 Spring 当中提供的注解 Component 以及它的三个衍 生注解&#xff08; Controller 、 Service 、 Repository &#xff09;来声明 IOC 容器中的 bean 对象&#xff0c;同时我们也学 习了如何为应用程序注入运行时所需要依赖的 bean 对象&#xff0c;也就是依赖注…

电池快充协议芯片

1&#xff1a;18650充电快充规则 电池知识 | 东莞市恒帝电子科技有限公司 (heldee.com) 锂电池快速充电知识【钜大锂电】 (juda.cn)18 锂电池和18650锂电池能不能快速充电&#xff0c;四种充电方式讲解 | 东莞市恒帝电子科技有限公司 (heldee.com) 2&#xff1a;国产厂家 …

光子架与电子架 -- 主从子架

主从子架模式可以实现物理上的多个子架在网管上作为一个网元统一管理&#xff0c;这样可以节省IP资源与管理开销&#xff0c;方便维护。 主从子架级联模式 在主从子架模式下&#xff0c;仅主子架可以和网管相连。和网管相连的主子架所在网元为网关网元。主从子架支持树型级联和…

node-rtsp-stream、jsmpeg.min.js实现rtsp视频在web端播放

1. 服务地址&#xff08;私有&#xff09;&#xff1a;https://gitee.com/nnlss/video-node-server 2.node-rtsp-stream 需要安装FFMPEG&#xff1b; 3.给推拉流做了开关&#xff0c;可借助http请求&#xff0c;有更好方式可联系&#xff1b; 4.存在问题&#xff1a; 1&…

浅谈提示工程之In-context learning技术

提示工程之In-context learning技术&#xff1b; 通过一张图片围绕下边几个方面进行简单说明 概念起因本质结构注意事项 日常总结

C++(9.24)

头文件 #ifndef MY_STRING_H #define MY_STRING_H#include <iostream>class My_string { private:char *ptr; // 指向字符数组的指针int size; // 字符串的最大容量int len; // 字符串的当前长度public:My_string();My_string(const char *src);My_string(const My_s…