分布式算法

分布式场景下的核心问题

分布式场景下困扰我们的3个核心问题(CAP):一致性、可用性、分区容错性。
1、一致性(Consistency):无论服务如何拆分,所有实例节点同一时间看到是相同的数据。
2、可用性(Availability):不管是否成功,确保每一个请求都能接收到响应。
3、分区容错性(Partition Tolerance):系统任意分区后,在网络故障时,仍能操作。

我们最为关注的是如何在高并发下保障 Data Consistency(数据一致性),因为在很多核心金融业务场景(如 支付、下单、跨行转账)中,为了避免资金问题,是需要强一致性结果的。
而分布式一致性算法就是保障 Data Consistency的强大利刃,它的目标是确保分布式系统中多个节点在读取或修改同一份数据时,产生相同结果的关键机制。这些算法对于保证分布式系统的一致性和可靠性至关重要。

常用的分布式算法
1、Paxos算法。
2、Raft算法。
3、ZAB(ZooKeeper Atomic Broadcast)算法

Paxos算法

Paxos算法是一种用于分布式系统中保障一致性的算法,由Leslie Lamport于1990年提出,被广泛应用于分布式系统中的一致性问题,如分布式数据库、分布式存储系统等。
该算法的主要目标是在一个由多个节点组成的分布式系统中,协调某个数据值并达成一致性,典型的少数服从多数的案例。

基本概念
1、提案: 由提案号(id)和提案内容(value)组成,其中id主要用于实现Paxos算法,而value对应在实际的分布式系统中为所需要修改数据的命令 或者 log信息。
2、角色: Paxos算法中抽象出来的概念,对应着实际分布式环境中的不同分工。主要角色包括提议者(Proposer)、附议者(Acceptor)和学习者(Learner)。

  • 提议者负责提出值的提案。
  • 附议者负责接受提案并投票。
  • 学习者负责学习已经达成一致的值。
    在这里插入图片描述

Proposer 提案者
提案者负责提出提案 (Proposal),Proposal信息包括提案编号 (Proposal ID) 和提议的值 (Value)。提案的value,可以是任何行为或者操作,比如传统转账场景,将用户的账号余额从0改为100,Paxos 协议统一抽象为value。 Proposer可以有多个,不同的Proposer可以提出不同的甚至互斥的value,比如提案者A消费(将变量Money-100),提案者B也消费(将变量Money-200),但对同一轮Paxose而言,最多只有一个value可以被批准,否则就乱套了。
Acceptor 附议者
Acceptor 从含义上来说就是除了当前Proposer以外的其他机器,他们之间完全平等和独立,Proposer需要争取超过半数(N/2+1)的 Acceptor 批准后,其提案才能通过,它倡导的“value”操作才能被所有机器(包括Proposer、Acceptor、Learner)所接受。
Learner 学习者
Learner 不参与选举,而是学习被批准的 value,在Paxos中,Learner主要参与相关的状态机同步流程。这里Leaner的流程就参考了Quorum议会机制,某个value需要获得超过半数的Acceptor 批准,才能真正被Learner学习到。

算法流程
1、准备阶段(Prepare阶段):提议者(Proposer)向所有Acceptor节点发起Prepare请求,携带全局唯一且递增的提案编号N,要求它们告诉提议者已经接受的最高提议号。如果接受者接受了轮次小于当前轮次的提案,那么它会更新自己的状态,拒绝当前轮次的提案。
2、承诺阶段(Promise阶段) :Acceptor节点接收到prepare请求后,会检查该请求的提议号是否比它已经接受的提议号更高。如果是,那么节点会更新自己的状态,承诺不再接受轮次小于当前轮次的提案。
Acceptor收到Prepare请求后,有两种情况:

  • 如果Acceptor首次接收Prepare请求, 设置MaxN=N, 同时响应ok。
  • 如果Acceptor不是首次接收Prepare请求,则:
    • 若请求过来的提案编号N小于等于上次持久化的提案编号ResN,则不响应或者响应error。
    • 若请求过来的提案编号N大于上次持久化的提案编号MaxN, 则更新MaxN=N,同时给出正确的响应。

3、承诺响应阶段(Acknowledge阶段) :在这个阶段,接受者会检查自己是否接受了当前提案。如果是,那么接受者会返回一个承诺响应,告诉提议者当前提案已经被接受。
4、提议的接受与决策 :当Acceptor节点接收到一个提议请求时,它会检查该提议的值是否比它已经接受的值更高。如果是,那么它会接受该提议,并向其他节点发送接受消息。当一个提议被大多数节点接受后,该提议就成为了决策,并被所有节点执行。
Proposer 获得 Accept 回复的信息之后,做如下判断:

  • 回复数量 > Acceptor 数量的1/2时,代表提交 value 成功,发送广播给所有的 Proposer、Learner,通知它们已提交的 value。
  • 回复数量 <= Acceptor 数量的1/2时,则重新开始,更新生成更大的提案号,跳转到准备阶段执行。
  • 收到响应error时,同样更新生成更大的提案号,转到准备阶段执行。

5、学习阶段(Learn阶段) :学习者会向所有接受者发送一个学习请求,接受者会返回已经接受的最大提案,使学习者能够学习到已经达成一致的值。

算法应用
Paxos算法具有高度容错特性,可以在某个节点宕机、网络异常、消息延迟等问题的情况下,快速且正确地在集群内部对某个数据达成一致。所以在很多业务场景中得到应用。比如:
1、Zookeeper使用一个类Multi-Paxos的共识算法作为底层存储协同的机制。
2、Google公司在其分布式锁中应用了Multi-Paxos算法。

Raft算法

基本概念
Raft 算法是一致性算的一种,用来解决分布式一致性问题。它提供了一种在计算系统集群中分布状态机的通用方法,确保集群中的每个节点都同意一系列相同的状态转换。
其主要目标是解决分布式系统中的领导者选举、日志复制和安全性等关键问题。

领导者选举与超时机制
在Raft算法中,服务器可以处于三种状态:领导者(leader)、跟随者(follower)和候选者(candidate)。正常情况下,集群中只包含一个 leader ,其余服务器都是 follower 。
跟随者通过投票选出领导者,只有得到“大多数”跟随者投票的服务器能成为领导者;领导者负责将命令同步给跟随者,只有被“大多数”跟随者确认的命令才能提交。
1、跟随者(Follower)
Fllower是所有节点的初始状态,内部都会有一个随机超时时间。这个超时时间,规定了在倒计时结束后仍然收不到Leader的心跳,Follower就会转变为Candidate。
2、候选者(candidate)
Follower在转变为Candidate后,超时时间重置,倒计时结束时就会向其他节点提名自己的实,拉取选票。
如果能获得半数以上(1/2以上,包含自己投给自己的)的选票,则当选为Leader,这个过程就叫做Leader选举。
所以节点最好是单数,避免极端情况下出现一个集群选举出两个Leader的脑裂问题。
3、领导者(leader)
Raft集群通过Leader与客户端进行交互,Leader不断处理写请求与发送心跳给Follower,Follower在收到Leader的心跳后,其超时时间会重置,即重新开始倒计时。
正常工作期间只有 Leader 和 Follower,且Leader至多只能有一个。
在这里插入图片描述

ZAB(ZooKeeper Atomic Broadcast)算法

基本概念
ZAB(Zookeeper Atomic Broadcast)是Zookeeper原子消息广播协议,是Zookeeper保证数据一致性的核心算法。该算法借鉴了Paxos算法,但又不像Paxos那样是一种通用的分布式一致性算法,而是特别为Zookeeper设计的支持崩溃恢复的原子广播协议。
在Zookeeper中,主要依赖ZAB协议来实现数据一致性。基于该协议,Zookeeper实现了一种主备模型(即Leader和Follower模型)的系统架构,保证集群中各个副本之间数据的一致性。通过一台主进程(Leader)负责处理外部的写事务请求,然后将数据同步到其他Follower节点,如果超过半数成功ACK,则主进程执行 Commit操作。

广播流程
ZAB 协议的消息广播过程使用的是一个原子广播协议,类似一个 二阶段(2PC) 提交过程。对于客户端发送的写请求,全部由 Leader 接收,Leader 将请求封装成一个事务 Proposal,将其发送给所有 Follwer ,然后,根据所有 Follwer 的反馈,如果超过半数成功响应,则执行 Commit 操作(先提交自己,再发送 Commit 给所有 Follwer)。
在这里插入图片描述

Gossip协议(八卦算法)

基本概念
Gossip协议,也被称为流言协议或八卦协议,是一种在分布式系统中用于节点之间通信和数据同步的算法。其设计灵感来源于人类社交中的流言传播机制,即一个人将消息告诉几个人,这些人再各自将消息传播给其他人,最终使大多数人得知该消息。Gossip协议因其简单、鲁棒、可扩展等特性而被广泛应用于解决大规模分布式系统中的一致性和可靠性问题。
最终一致性:Gossip协议实现的是一种最终一致性,即虽然不能保证在某个特定时刻所有节点都收到消息,但理论上最终所有节点都会收到消息。
两种类型
Anti-Entropy(反熵):以固定的概率传播所有的数据,确保系统中节点之间数据的一致性。
Rumor-Mongering(谣言传播):仅传播新到达的数据,系统有一定的概率会不一致,但开销较小。

流程
Gossip协议的流程通常包括以下几个步骤:
1、消息产生:当一个节点(称为种子节点)有状态需要更新到网络中的其他节点时,该过程开始。
2、随机选择节点:种子节点随机选择其周围的几个节点作为消息的初始传播对象。
3、消息传播:

  • Push-based(推模式):节点向其选中的节点传输数据(可能包括key、value、version等),接收到的节点更新本地数据,并重复该过程。
  • Pull-based(拉模式):节点请求其他节点的数据,接收到请求的节点将本地较新的数据推送给请求节点,请求节点更新本地数据。
    消息扩散:随着消息的传播,越来越多的节点会接收到消息,并继续向其他节点传播,直到最终所有节点都收到消息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/149612.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【C++笔试强训】

​ 学习编程就得循环渐进&#xff0c;扎实基础&#xff0c;勿在浮沙筑高台 循环渐进Forward-CSDN博客 目录 循环渐进Forward-CSDN博客 第一题&#xff1a;除2&#xff01; 第二题&#xff1a;dd爱框框 第三题&#xff1a;简写单词 第一题&#xff1a;除2&#xff01; 牛客网…

ROS理论与实践学习笔记——1 Ros概述与环境搭建

1、ROS概述 ROS全称Robot Operating System(机器人操作系统)&#xff1b; “ROS Plumbing Tools Capabilities Ecosystem”&#xff0c;即ROS是通讯机制、工具软件包、机器人高层技能以及机器人生态系统的集合体。 2、ROS安装 2.1 安装配置虚拟机软件 VMware或virtualbox…

【项目实战】如何在项目中基于 Spring Boot Starter 开发简单的 SDK

什么是SDK 通常在分布式项目中&#xff0c;类和方法是不能跨模块使用的。为了方便开发者的调用&#xff0c;我们需要开发一个简单易用的SDK&#xff0c;使开发者只需关注调用哪些接口、传递哪些参数&#xff0c;就像调用自己编写的代码一样简单。实际上&#xff0c;RPC(远程过…

从碎片到整合:EasyCVR平台如何重塑城市感知系统的视频数据生态

随着城市化进程的加速&#xff0c;城市感知系统作为智慧城市的重要组成部分&#xff0c;正逐步成为提升城市管理效率、保障公共安全、优化资源配置的关键手段。EasyCVR视频汇聚融合平台&#xff0c;凭借其强大的数据整合、智能分析与远程监控能力&#xff0c;在城市感知系统中扮…

short-link笔记

1.Accessors(chain true) (见于Result类的注解) 不写默认为false&#xff0c;当该值为 true 时&#xff0c;对应字段的 setter 方法调用后&#xff0c;会返回当前对象。 -->可用于链式编程 参:Accessors 注解详解-CSDN博客 2.关键信息脱敏 利用将class通过jackon序列化为…

分布式计算框架

进入Scala模式 终端里输入Scala 创建一个新的Scala文件 vim 文件名.scala 复制粘贴代码 ctrlshift c/v 使用vim 先进入插入模式&#xff0c;可以通过按i键来实现&#xff0c;然后粘贴代码&#xff0c;完成后按Esc键退出插入模式&#xff0c;保存并退出可以通过输入:wq然后按…

【中台设计】数字中台,大数据中台解决方案,中台建设指南(资料Word分享)

1. 中台概念 2. 推动企业组织模式演进 3. 建设方法 4 .中台内容 5. 数据安全体系 中台内容围绕数据中台建设评估、整体框架、数据采集&#xff0c;结构化、半结构化、非结构化的数据采集&#xff0c;数据计算能力、存储计算引擎、数据架构、数据挖掘、各种不同数据层建设、模型…

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型

前言 在时间序列预测任务中&#xff0c;像 EMD&#xff08;经验模态分解&#xff09;、CEEMDAN&#xff08;完全集合经验模态分解&#xff09;、VMD&#xff08;变分模态分解&#xff09; 等分解算法的使用有可能引入信息泄露&#xff0c;具体情况取决于这些方法的应用方式。信…

Vue+Tui-image-editor实现图片编辑(涂鸦,裁剪,标注,旋转,滤镜)

目录 前言 效果展示 涂鸦 裁剪 标注 旋转 滤镜 安装 使用 中文化自定义样式按钮优化 参考链接 前言 需求&#xff1a;对图片进行旋转、缩放、裁剪、涂鸦、标注、添加文本等。 效果展示 涂鸦 裁剪 标注 旋转 滤镜 安装 npm i tui-image-editor // or yarn add tui-image…

【MySql】在ubuntu下安装MySql数据库

目录 查看操作系统版本 添加 MySql APT源 访问下载页面并下载发布包 安装发布包 执行安装命令 从MySql APT源更新包信息 安装MySql 执行安装命令 查看MySql状态 开启自启动 登录MySql 查看操作系统版本 rootVM-24-2-ubuntu:~# lsb_release -a No LSB modules are ava…

数据集-目标检测系列-鲨鱼检测数据集 shark >> DataBall

数据集-目标检测系列-鲨鱼检测数据集 shark >> DataBall 数据集-目标检测系列-鲨鱼检测数据集 shark 数据量&#xff1a;6k 想要进一步了解&#xff0c;请联系。 DataBall 助力快速掌握数据集的信息和使用方式&#xff0c;百种数据集&#xff0c;持续增加中。 示例&…

【学习笔记】Transformer架构探讨

Transformer 是一种彻底改变人工智能方法的神经网络架构。它首次在 2017 年的里程碑式论文 "Attention is All You Need"[1] 中被提出&#xff0c;并迅速成为深度学习模型的首选架构&#xff0c;为 OpenAI 的 GPT、Meta 的 Llama 和 Google 的 Gemini 等文本生成模型…

Django操作ES实现搜索功能

Django操作ES实现题目的高亮搜索功能 一、基础配置二、使用ES完成题目的高亮搜索1. ES的初始化接口2. 使用ES实现题目的增删改查1. 题目的高亮搜索2. 题目的高亮搜索优化3. 将数据存储到MYSQL中持久化存储并同步到ES中一、基础配置 下载依赖,与之前配置的ES版本一致。 ES的配置…

SpringBoot文档管理系统:架构与功能

第2章相关技术 2.1 Java技术介绍 Java语言擅长开发互联网类应用和企业级应用&#xff0c;现在已经相当的成熟&#xff0c;而且也是目前使用最多的编程语言之一。Java语言具有很好的面向对象性&#xff0c;可以符合人的思维模式进行设计&#xff0c;封装是将对象的属性和方法尽可…

[利用python进行数据分析01] “来⾃Bitly的USA.gov数据” 分析出各个地区的 windows和非windows用户

2011 年&#xff0c; URL 缩短服务 Bitly 跟美国政府⽹站 USA.gov 合作&#xff0c;提供 了⼀份从⽣成 .gov 或 .mil 短链接的⽤户那⾥收集来的匿名数据。 在 2011 年&#xff0c;除实时数据之外&#xff0c;还可以下载⽂本⽂件形式的每⼩时 快照。 数据集下载&#xff1a;通…

复杂网络(Complex Network)社团数据可视化分析(gephi)实验

Experiment Report of complex network course 复杂网络实验报告 目录 Experiment Report of complex network course 复杂网络实验报告 实验目标&#xff08;The objective of the experiment&#xff09;&#xff1a; 实验流程&#xff08;The flow of the experiment&a…

实验室ICPR 2024论文分享┆FPMT: 基于增强型半监督模型的交通事件检测(含详细视频解读)

目录 论文分享简介 1. 会议介绍 2. 研究背景及主要贡献 3. 方法 4. 实验 5. 结论 6. 论文介绍视频 论文分享简介 本推文详细介绍了一篇实验室的最新论文成果《FPMT: Enhanced Semi-Supervised Model for Traffic Incident Detection》&#xff0c;该论文已被第27届国际…

23中设计模式,以及三种常见的设计模式demo

常见的23种设计模式 Java设计模式是软件工程中常见的解决方案&#xff0c;用于解决在软件设计中反复出现的问题。设计模式可以分为三大类&#xff1a;创建型模式、结构型模式和行为型模式。这里&#xff0c;我将简单介绍三种常见的设计模式&#xff0c;并给出相应的Java代码示例…

序列化和自定义协议

序言 在上一篇文章中&#xff0c;我们介绍了Socket 编程&#xff0c;已经可以简单地使用该方法来进行服务端和客户端的数据了。在这篇文章中我们将在此基础上学习序列化和反序列化&#xff0c;以及在应用层上自定义协议。 序列化和反序列化 1. 为什么需要序列化和反序列化&…

网页跨域异常100%解决(谷歌浏览器)

目的&#xff1a; 1.开发过程中&#xff0c;经常出现浏览器提示跨域 2.原因新版本浏览器拦截跨域请求 3.错误关键消息如下&#xff1a; Access-Control-Allow-Origin cess to XMLHttpRequest at http://192.168.1.104:3080/api/Login/Store from origin http://yingyongliere…