拥塞控制算法的 rtt 公平性

我强调过,拥塞控制的核心在公平可用性,公平性由 buffer 动力学保证,而 buffer 动力学有两种表现形式:

  • buffer 占比决定带宽占比,以 aimd 为例;
  • 带宽越小,buffer 挤兑加速比越大,以 bbr 为例。

以这两种形式分类,可清晰获知,对于第一种,rtt 越小越有优势,而对于第二种,公平性与 rtt 无关,rtt 越小,收敛虽迟但到。

先来个直感,以下是一个带 red 的 aimd 实例:

for n in range(1, len(times)):if n % 5 == 0:x[n] = x[n-1] + dt * (C*wx[n-1]/(wx[n-1] + wy[n-1] + wz[n-1]) - x[n-1])y[n] = y[n-1] + dt * (C*wy[n-1]/(wy[n-1] + wx[n-1] + wz[n-1]) - y[n-1])wx[n] = wx[n-1] + Iwy[n] = wy[n-1] + Ielse:x[n] = x[n-1]y[n] = y[n-1]wx[n] = wx[n-1]wy[n] = wy[n-1]if n % 20 == 0:z[n] = z[n-1] + dt * (C*wz[n-1]/(wz[n-1] + wy[n-1] + wx[n-1]) - z[n-1])wz[n] = wz[n-1] + Ielse:z[n] = z[n-1]wz[n] = wz[n-1]if wx[n] + wy[n] + wz[n] > 2*C*R:# 注释为 westwoodif random.random() < 0.5:wx[n] = wx[n]/2#wx[n] = x[n] * Rif random.random() < 0.5:wy[n] = wy[n]/2#wy[n] = y[n] * Rif random.random() < 0.5:wz[n] = wz[n]/2#wz[n] = z[n] * Rr[n] = (wx[n] + wy[n] + wz[n]) / Cif r[n] < R:r[n] = R

代码给出一个 4 倍的 rtt 差别(此外还有西装),x,y 的 rtt 相等,z 为它们的 4 倍,结局如下:
在这里插入图片描述

这很容易理解,aimd 是一个线性系统( d w d t = 1 \dfrac{dw}{dt}=1 dtdw=1),rtt 差 n 倍,意味着固定时间内 cwnd 增量差 n 倍,带宽自然也差 n 倍。rtt 正比于 cwnd 增量,而我前面描述过 aimd inc 参数不同时的收敛效果,设 i1,i2 为两条 aimd 流的 cwnd 增量,则(加权)公平线在 y = (a/b)*x。

因此,解决 aimd 算法 rtt 不公平性的方法就是消除 rtt 的影响,用绝对时间替换相对时间,如 cubic 算法所示。

接下来看 inflt 守恒和 bbr,这两个算法都是非线性(其微分方程组没有解析解),它们的共同点是不通过持续占据 buffer 而做收敛,buffer 对它们的意义在于提供一个验证空间,它们的 buffer 动力学在于用完即走,不靠 buffer 持续占比收敛,而依靠带宽与加速比的负相关(注意,非反比,公式前面写过很多,不再赘述)关系来收敛。

这不难理解,假设流 1 最近一次获得带宽为 x,无论此后流 2 挤兑多少次,假设它获得了带宽 y,但它 drain 掉了 queue,此时 buffer 占率为 0,当流 1 再次挤兑时,它的基础还是 xR,而流 2 的基础为 yR,至于如何收敛,就看 x,y 谁大,越大加速比越小,最终获得公平分配。

先给出 inflt 守恒的直感,然后详细说说 bbr:

for n in range(1, len(times)):if n % 5 == 0:x[n] = x[n-1] + dt * (C*wx[n-1]/(wx[n-1] + wy[n-1] + wz[n-1]) - x[n-1])y[n] = y[n-1] + dt * (C*wy[n-1]/(wy[n-1] + wx[n-1] + wz[n-1]) - y[n-1])wx[n] = x[n-1]*R + Iwy[n] = y[n-1]*R + Ielse:x[n] = x[n-1]y[n] = y[n-1]wx[n] = wx[n-1]wy[n] = wy[n-1]if n % 20 == 0:z[n] = z[n-1] + dt * (C*wz[n-1]/(wz[n-1] + wy[n-1] + wx[n-1]) - z[n-1])wz[n] = z[n-1]*R + Ielse:z[n] = z[n-1]wz[n] = wz[n-1]

效果如下:
在这里插入图片描述

我们看到了虽迟但到。可想而知,bbr 也是虽迟但到的效果。但我想点 bbr 的另一个主题,看看 bbr 是如何解决的。

bbr 有个 maxbw window 滑动窗口,缺省 10-round,这意味着 maxbw 可以保留 10-round 这么久,一旦时间超过这么久,当前流的基础带宽 maxbw = x 就会滑走而不再有效,失去了这个挤兑基础,就失去了信任 “带宽与加速比负相关” 的前提,可想而知,收敛就崩塌了。

我来用一个相对真实的 bbr 实现模拟这个过程:

for n in range(1, len(times)):if n > WIN + 1:sublistx = x[n - WIN : n]sublisty = y[n - WIN : n]sublistz = z[n - WIN : n]max_x = max(sublistx)max_y = max(sublisty)max_z = max(sublistz)else:max_x = x[n-1]max_y = y[n-1]max_z = z[n-1]wx[n] = max_x*Rwy[n] = max_y*Rwz[n] = max_z*Rif n % 3 == 0:x[n] = x[n-1] + dt * (C*g*max_x*R/(g*max_x*R + wy[n-1] + wz[n-1]) - x[n-1])y[n] = y[n-1] + dt * (C*g*max_y*R/(g*max_y*R + wx[n-1] + wz[n-1]) - y[n-1])else:x[n] = C*(wx[n-1])/(wx[n-1] + wy[n-1] + wz[n-1])y[n] = C*(wy[n-1])/(wx[n-1] + wy[n-1] + wz[n-1])if n % 30 == 0:z[n] = z[n-1] + dt * (C*g*max_z*R/(g*max_z*R + wy[n-1] + wx[n-1]) - z[n-1])else:z[n] = C*(wz[n-1])/(wx[n-1] + wy[n-1] + wz[n-1])

我将两个 rtt 设定为 10 倍关系,但绝对值差 30 - 3 = 27 个时间单位,如果我用 WIN = 26(小于 27) 模拟,直接崩塌:
在这里插入图片描述

但如果 WIN = 30,则结局高尚:
在这里插入图片描述

一个 WIN 内至少 probe 一次是标准 bbr 的设定,但按照标准 bbr 的设定,这意味着什么?bbr 的 WIN 是以 rtt 为单位,而不是绝对时间,理论上这里就存在 rtt 的绝对时间不公平问题。

假设流 1 的 rtprop 为 10ms,流 2 的 rtprop 为 200ms,这意味着流 2 的 maxbw 可以保留 2s,而流 1 的 maxbw 仅可以保留 100ms,一旦遭遇拥塞排队,100ms 内没有 probe,流 1 将失去带宽收敛的基础。所以呢,所以 bbr 采用了 packet-timed 来计时,让计时单位和自身关联:

u32     rtt_cnt;            /* count of packet-timed rounds elapsed */
...
/* See if we've reached the next RTT */
if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {bbr->next_rtt_delivered = tp->delivered;bbr->rtt_cnt++;bbr->round_start = 1;bbr->packet_conservation = 0;
}

这确保了任何流在一个 WIN 内都可以完成一个 probe,确保了公平收敛。很多人咨询这个问题,我这里给出一个长篇回复。

理论很美,在实践中,tcp 的问题在于 ack self-clock,如果 ack 没来,来晚了,聚合了,什么都算不准,但它无疑还是驱动一切的基础,很多问题都来自于它,但很多优化也基于它,很烦,不谈。

想当副经理,就得多给经理送礼。

浙江温州皮鞋湿,下雨进水不会胖。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/145333.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

AI Agent的20个趋势洞察

结论整理自【QuestMobile2024 AI智能体应用洞察半年报】&#xff1a; AI原生应用&#xff08;APP)一路高歌&#xff1b;豆包用户突破3000万&#xff1b;TOP10 APP以综合类应用为主。无论何种类型的AIGC APP都以智能体为“抓手”&#xff0c;专注于解决各种细分场景中的问题&am…

Opencv+Cuda编译的保姆级别教程

OpencvCuda编译的保姆级别教程 一、环境总览二、环境准备2.1 opencv和opencv扩展2.2 cuda环境下载2.2.1 首先电脑要有英伟达的显卡2.2.2 然后查看显卡驱动版本2.2.3 下载Cuda Toolkit工具包2.2.4 下载Cudnn库 2.3 CMake下载 三、CMake配置步骤3.1 加载路径第一次Configure3.1.1…

influxdb-winsdows电脑用户切换 Unauthorized

如果切换winsdows电脑用户之后启动influxdb出现Unauthorized 1.考虑windows用户的权限问题&#xff0c;给full control 2.要把原来用户下的.influxdb中的sqlite给搬到新用户下&#xff0c;因为里面存了数据库的token&#xff0c;需要认证

C++入门基础知识77(实例)——实例 2【标准输入输出】

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于C 实例 【标准输入输出】相关内容&#…

React学习day08-useReducer、useMemo、memo、useCallback、forwardRef、useInperativeHandle

15、useReducer 1&#xff09;作用&#xff1a;用来管理相对复杂的状态数据&#xff0c;类似于useState 2&#xff09;使用步骤&#xff08;传递一般的参数&#xff09;&#xff08;在APP.js中&#xff09;&#xff1a; ①定义一个reducer函数&#xff0c;在函数中通过switc…

技术美术百人计划 | 《4.4 抗锯齿》笔记

前言&#xff1a;文中补充的内容很多来自链接里的&#xff0c;建议看看链接的文章。 一、锯齿 (一) 什么是锯齿 在学习渲染的旅途中&#xff0c;你可能会时不时遇到模型边缘有锯齿的情况。这些锯齿边缘(Jagged Edges)的产生和光栅器将顶点数据转化为片段的方式有关。在下面的…

Mobile net V系列详解 理论+实战(1)

Mobilenet 系列 论文精讲部分0.摘要1. 引文2. 引文3. MobileNet 模型架构3.0 卷积个人理解3.1 深度可分离卷积3.2 网络结构和训练3.3 宽度乘数&#xff1a;更细的模型 α3.4 分辨率乘数&#xff1a;降低表示的维度ρ 4. 实验4.1 模型选择4.2. 模型缩减超参数4.3. 细粒度识别4.4…

人力资源数据集分析(二)_随机森林与逻辑回归

数据入口&#xff1a;人力资源分析数据集 - Heywhale.com 数据说明 字段说明EmpID唯一的员工IDAge年龄AgeGroup年龄组Attrition是否离职BusinessTravel出差&#xff1a;很少、频繁、不出差DailyRate日薪Department任职部门&#xff1a;研发部门、销售部门、人力资源部门Dista…

Linux 进程3

进程地址空间 CPU读取数据都需要地址&#xff0c;在计算机中所有东西都是一种数据&#xff0c;包括我们的进程。 这是一个进程空间示意图&#xff0c;操作系统通过task_struct结构体链表来管理每一个进程&#xff0c;结构体里面有一个指针指向操作系统为进程开辟的一段空间&am…

2-100 基于matlab的水果识别

基于matlab的水果识别。从面积特征、似圆形特征&#xff0c;颜色(rgb值和hsv值)特征对图像中的梨子、苹果、桃子、香蕉和菠萝进行特征提取&#xff0c;边缘检测识别&#xff0c;最后按照筛选出来的特征对水果进行识别。程序已调通&#xff0c;可直接运行。 下载源程序请点链接…

【CustomPainter】渐变圆环

说明 实现一个渐变圆环&#xff0c;起点位置为- π / 2。 效果 源码 GradientCircularPainter1 class GradientCircularPainter1 extends CustomPainter {final double progress;GradientCircularPainter1(this.progress);overridevoid paint(Canvas canvas, Size size) {c…

VCNet论文阅读笔记

VCNet论文阅读笔记 0、基本信息 信息细节英文题目VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments翻译VCNet和功能目标正则化用于学习连续处理的因果效应单位芝加哥大学年份2021论文链接[2103.07861] VCNet和功能定向正…

OpenCV特征检测(5)检测图像中的角点函数cornerMinEigenVal()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 计算用于角点检测的梯度矩阵的最小特征值。 该函数类似于 cornerEigenValsAndVecs&#xff0c;但它计算并存储协方差矩阵导数的最小特征值&…

2024上海工博会,正运动激光振镜运动控制器应用预览(二)

■展会名称&#xff1a; 第二十四届中国国际工业博览会&#xff08;以下简称“上海工博会”&#xff09; ■展会日期 2024年9月24日–28日 ■展馆地点 中国国家会展中心&#xff08;上海&#xff09; ■展位号 6.1H-E261 正运动激光加工控制解决方案主要分为激光振镜运动…

24 小时不关机的挂机云电脑,还能这么玩?

云电脑技术为我们提供了无限可能。特别是对于游戏爱好者&#xff0c;挂机云电脑不仅解决了传统电脑的局限性&#xff0c;还带来了更为便利的游戏体验。除此之外云电脑还有什么其他玩法呢&#xff1f; 01 挂机云电脑的优势 首先要知道&#xff0c;什么是挂机云电脑&#xff1f…

解锁自动化新境界:KeymouseGo,让键盘和鼠标动起来!

文章目录 解锁自动化新境界&#xff1a;KeymouseGo&#xff0c;让键盘和鼠标动起来&#xff01;背景&#xff1a;为何选择KeymouseGo&#xff1f;KeymouseGo简介安装KeymouseGo简单函数使用应用场景常见问题与解决方案总结 解锁自动化新境界&#xff1a;KeymouseGo&#xff0c;…

操作系统 | 学习笔记 | | 王道 | 5.1 I/O管理概述

5.1 I/O管理概述 5.1.1 I/O设备 注&#xff1a;块设备可以寻址&#xff0c;但是字符设备是不可寻址的 I/O设备是将数据输入到计算机中&#xff0c;或者可以接收计算机输出数据的外部设备&#xff0c;属于计算机中的硬件部件&#xff1b; 设备的分类 按使用特性分类&#xff…

from tqdm.auto import tqdm用法详细介绍

tqdm 是一个 Python 库&#xff0c;用于在长时间运行的任务中显示进度条。tqdm.auto 是 tqdm 的一个版本&#xff0c;能够自动适配输出环境&#xff08;如 Jupyter Notebook、命令行等&#xff09;&#xff0c;以确保进度条在各种环境下显示正确。下面是 tqdm.auto 的详细用法介…

英飞凌 PSoC6 评估板 RT-Thread 开发环境搭建

本文介绍如何搭建基于 RT-Thread Studio IDE 工具的 PSoC6 RTT 评估板的开发环境&#xff0c;通过搭建一个简单的工程&#xff0c;将代码编译、下载到 PSoC6 RTT 开发板。 安装软件包 首先需要安装 RT-Thread Studio&#xff0c;如果你还没安装&#xff0c;可以点击这里下载安…

MySQL 中的 UTF-8 与 UTF8MB4:差异解析

在 MySQL 数据库中&#xff0c;字符集的选择对于数据的存储和处理至关重要。其中&#xff0c;UTF-8 和 UTF8MB4 是两个常见的字符集选项。那么&#xff0c;它们之间到底有什么区别呢&#xff1f; 一、字符集简介 UTF-8 UTF-8&#xff08;8-bit Unicode Transformation Format&…