人力资源数据集分析(二)_随机森林与逻辑回归

数据入口:人力资源分析数据集 - Heywhale.com

数据说明

字段说明
EmpID唯一的员工ID
Age年龄
AgeGroup年龄组
Attrition是否离职
BusinessTravel出差:很少、频繁、不出差
DailyRate日薪
Department任职部门:研发部门、销售部门、人力资源部门
DistanceFromHome通勤距离
Education教育等级
EducationField专业领域:生命科学、医学、市场营销、技术、其他
EnvironmentSatisfaction工作环境满意度
Gender性别
HourlyRate时薪
JobInvolvement工作参与度
JobLevel工作级别
JobRole工作角色
JobSatisfaction工作满意度
MaritalStatus婚姻状况
MonthlyIncome月收入
SalarySlab工资单
MonthlyRate月薪
NumCompaniesWorked工作过的公司数量
PercentSalaryHike加薪百分比
PerformanceRating绩效评级
RelationshipSatisfaction关系满意度
StandardHours标准工时
StockOptionLevel股票期权级别
TotalWorkingYears总工作年数
TrainingTimesLastYear去年培训时间
WorkLifeBalance工作生活平衡评价
YearsAtCompany在公司工作年数
YearsInCurrentRole担任现职年数
YearsSinceLastPromotion上次晋升后的年数
YearsWithCurrManager与现任经理共事年数
import pandas as pd
data = 'HR_Analytics.csv'
data = pd.read_csv(file_path)
# 打印每一列的唯一值
for column in data.columns:print(f"Unique values in {column}:")print(data[column].unique())

通过这段代码可以了解每一列的唯一值。观察到某些列含有缺失值且缺失值的行数较少,可以直接删去。

data_cleaned = data.dropna()

本文将通过随机森林与逻辑回归预测员工晋升路径和潜在的流失风险。

一:预测员工晋升路径

  1. 数据理解:首先,需要查看CSV文件的内容,以了解数据的结构和可用特征。这将帮助确定哪些特征可能与员工晋升路径相关。
  2. 数据预处理:基于数据理解,可能需要进行数据清洗,处理缺失值,转换分类数据,以及进行特征选择。
  3. 模型选择:选择一个合适的机器学习模型来预测员工晋升路径。考虑到这是一个分类问题,逻辑回归、决策树或随机森林等模型可能适用。
  4. 模型训练与评估:使用历史数据训练模型,并使用适当的评估指标(如准确率、召回率、F1分数)来评估模型性能。
  5. 结果解释:最后,我将解释模型结果,并提供关于员工晋升路径的预测。

首先检查数据集中的分类特征,以便进行适当的编码:

categorical_features = data.select_dtypes(include=['object', 'category']).columns.tolist()categorical_features

数据集中有多个分类特征,包括员工ID、年龄组、离职情况、出差频率、部门、教育领域、性别、工作角色、婚姻状况和薪资等级。为了在机器学习模型中使用这些特征,我们需要对它们进行编码。常见的编码方法包括独热编码(One-Hot Encoding)标签编码(Label Encoding)。独热编码适用于具有多个类别且类别之间没有顺序关系的特征,而标签编码适用于具有顺序关系的特征。

接下来,我将使用独热编码处理具有多个类别的分类特征。然后,我将选择与员工晋升路径相关的特征,并准备数据集以进行模型训练。

data_encoded = pd.get_dummies(data, columns=categorical_features, drop_first=True)data_encoded.head()

数据集经过独热编码后,现在包含了1522个特征。这个特征数量对于建立一个有效的机器学习模型来说可能太多了,可能会导致过拟合。因此,我们需要进行特征选择,只保留与员工晋升路径最相关的特征。

为了选择相关特征,我们可以使用不同的特征选择方法,例如基于模型的特征选择(如使用随机森林的特征重要性)或使用统计测试(如卡方检验)来选择与目标变量最相关的特征。在这个案例中,我们的目标变量是员工是否晋升,这需要我们首先定义晋升的标准。例如,我们可以根据员工的工作等级(JobLevel)是否增加来定义晋升。

接下来,我将定义晋升的标准,并使用随机森林模型来确定哪些特征与晋升最相关。然后,我将选择这些特征来训练模型。

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import numpy as npdata_encoded['Promotion'] = np.where(data_encoded['JobLevel'] > data_encoded['JobLevel'].shift(-1), 1, 0)data_encoded.dropna(subset=['Promotion'], inplace=True)relevant_features = ['Education', 'TotalWorkingYears', 'TrainingTimesLastYear','YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion','YearsWithCurrManager'
]features = data_encoded[relevant_features]
target = data_encoded['Promotion']X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)rf_classifier.fit(X_train, y_train)y_pred = rf_classifier.predict(X_test)accuracy = accuracy_score(y_test, y_pred)accuracy, classification_report(y_test, y_pred)

使用随机森林模型,我们得到了大约70%的准确率,可以使用该随机森林模型对数据进行预测。

此外,从分类报告中我们可以看到,模型在预测晋升(标签1)方面的召回率较低,这意味着它可能没有很好地识别出所有晋升的案例。这可能是因为晋升事件相对较少,导致数据集不平衡。在未来的工作中,可以考虑使用过采样欠采样技术来处理这种不平衡,或者使用不同的评估指标,如F1分数,来更好地衡量模型性能。

二:预测员工流失风险

1:判断特征重要性

首先进行一些基本的特征工程,例如从现有特征中创建新的特征。

categorical_features = ['EmpID', 'AgeGroup', 'Attrition', 'BusinessTravel', 'Department', 'EducationField', 'Gender', 'JobRole', 'MaritalStatus', 'SalarySlab']
data[categorical_features] = data[categorical_features].astype('category')data_types_updated = data.dtypesdata['Experience'] = data['TotalWorkingYears'] - data['YearsAtCompany']data_types_updated, data['Experience'].head()

我已经将分类特征转换为正确的数据类型,并创建了一个新的特征Experience,它表示员工的总工作经验减去在当前公司的年数。

接下来,将进行特征选择,确定哪些特征对于预测流失风险最为重要。这可以通过多种方法来完成,例如使用相关性分析、基于模型的特征重要性等。在这里,我将使用随机森林模型的特征重要性来选择特征。

from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
import matplotlib.pyplot as pltX = data.drop(['EmpID', 'Attrition'], axis=1)
y = data['Attrition']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)le = LabelEncoder()for feature in categorical_features:if feature != 'Attrition': data[feature] = le.fit_transform(data[feature])X = data.drop(['EmpID', 'Attrition'], axis=1)
y = data['Attrition']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)rf_clf.fit(X_train, y_train)feature_importances = rf_clf.feature_importances_feature_importances_df = pd.DataFrame({'Feature': X_train.columns, 'Importance': feature_importances})feature_importances_sorted = feature_importances_df.sort_values(by='Importance', ascending=False)top_features = feature_importances_sorted.head(10)plt.figure(figsize=(12, 8))
plt.barh(top_features['Feature'], top_features['Importance'], color='skyblue')
plt.xlabel('Feature Importance')
plt.ylabel('Feature')
plt.title('Top 10 Most Important Features for Attrition Prediction')
plt.gca().invert_yaxis()
plt.show()top_features

根据随机森林模型的特征重要性,我们可以看到MonthlyIncome(月收入)是预测员工流失风险最重要的特征,其次是Age(年龄)、DailyRate(日薪)、MonthlyRate(月薪)等。这些特征对于预测员工是否流失具有显著的影响。

接下来,我将使用这些特征来训练一个逻辑回归模型,并评估其在测试集上的性能。逻辑回归是一种常用的分类算法,特别适用于二元分类问题。

这段代码是一个使用Python语言和scikit-learn库进行数据预处理、模型训练、特征重要性评估和可视化的完整流程。以下是这段代码的详细解释:

from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
import matplotlib.pyplot as plt
import pandas as pd
  • LabelEncoder 用于将分类特征转换为数值型数据。
  • RandomForestClassifier 是随机森林分类器,用于分类任务。
  • train_test_split 用于将数据集分割为训练集和测试集。
  • classification_report 和 accuracy_score 用于评估模型的性能。
  • matplotlib.pyplot 用于数据可视化。
X = data.drop(['EmpID', 'Attrition'], axis=1)
y = data['Attrition']
  • 这部分代码从数据集中移除了不需要的列(例如员工ID和目标变量),并将剩余的数据作为特征集(X)和目标变量(y)。
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  • 使用 train_test_split 函数将数据集分割为训练集和测试集,其中测试集占总数据的20%,random_state 确保结果的可重复性。
rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)le = LabelEncoder()
  • 初始化一个随机森林分类器,其中包含100棵树。
  • 初始化一个 LabelEncoder 实例。
for feature in categorical_features:if feature != 'Attrition': data[feature] = le.fit_transform(data[feature])
  • 遍历分类特征列表,使用 LabelEncoder 对每个特征进行编码,排除目标变量。
X = data.drop(['EmpID', 'Attrition'], axis=1)
y = data['Attrition']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  • 由于数据已经经过编码处理,再次执行特征和目标变量的分割以及训练集和测试集的分割。
rf_clf.fit(X_train, y_train)
  • 使用训练集数据训练随机森林分类器。
feature_importances = rf_clf.feature_importances_feature_importances_df = pd.DataFrame({'Feature': X_train.columns, 'Importance': feature_importances})feature_importances_sorted = feature_importances_df.sort_values(by='Importance', ascending=False)top_features = feature_importances_sorted.head(10)
  • 从训练好的模型中获取特征重要性。
  • 创建一个DataFrame来存储特征和它们的重要性。
  • 按照特征重要性对DataFrame进行排序。
  • 显示最重要的前10个特征。
plt.figure(figsize=(12, 8))
plt.barh(top_features['Feature'], top_features['Importance'], color='skyblue')
plt.xlabel('Feature Importance')
plt.ylabel('Feature')
plt.title('Top 10 Most Important Features for Attrition Prediction')
plt.gca().invert_yaxis()
plt.show()
  • 使用条形图可视化最重要的前10个特征。
  • 设置图表的大小、颜色、标签和标题。
  • 反转y轴,使得最重要的特征在上方。
top_features
  • 显示排序后的特征重要性DataFrame的前10行。

2:建立逻辑回归预测模型

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, roc_auc_scorelog_clf = LogisticRegression(random_state=42)log_clf.fit(X_train, y_train)y_pred = log_clf.predict(X_test)accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
roc_auc = roc_auc_score(y_test, log_clf.predict_proba(X_test)[:, 1])accuracy, conf_matrix, roc_auc

逻辑回归模型在测试集上的准确率为83.16%,混淆矩阵显示有48个实际流失的样本被错误地预测为未流失。模型的ROC AUC得分为0.709,这意味着模型在区分流失和非流失员工方面的性能是中等偏上。可以利用该逻辑回归根据员工数据预测员工是否流失。

:roc_auc_score(y_test, log_clf.predict_proba(X_test)[:, 1])

roc_auc_score是一个用于计算接收者操作特征曲线下面积(Receiver Operating Characteristic Area Under the Curve,简称 ROC AUC)的函数。ROC AUC 是一种衡量二分类模型性能的指标,它的值介于 0.5(随机猜测)和 1(完美分类)之间,值越接近 1 表示模型性能越好。

y_test是真实的测试集目标变量值,通常是 0 和 1 表示的二分类结果。

log_clf.predict_proba(X_test)是使用已经训练好的分类器(这里假设 log_clf 是一个逻辑回归分类器)对测试集 X_test 进行预测,得到的是一个概率矩阵,其中每一行表示一个样本属于不同类别的概率。

[:, 1]表示取这个概率矩阵的第二列,通常对应着正类(1)的概率预测值。

整体而言,这段代码是计算使用逻辑回归分类器对测试集进行预测得到的正类概率与真实的测试集目标变量之间的 ROC AUC 值,以评估该分类器在测试集上的性能表现。

想要探索多元化的数据分析视角,可以关注之前发布的相关内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/145314.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Linux 进程3

进程地址空间 CPU读取数据都需要地址,在计算机中所有东西都是一种数据,包括我们的进程。 这是一个进程空间示意图,操作系统通过task_struct结构体链表来管理每一个进程,结构体里面有一个指针指向操作系统为进程开辟的一段空间&am…

2-100 基于matlab的水果识别

基于matlab的水果识别。从面积特征、似圆形特征,颜色(rgb值和hsv值)特征对图像中的梨子、苹果、桃子、香蕉和菠萝进行特征提取,边缘检测识别,最后按照筛选出来的特征对水果进行识别。程序已调通,可直接运行。 下载源程序请点链接…

【CustomPainter】渐变圆环

说明 实现一个渐变圆环,起点位置为- π / 2。 效果 源码 GradientCircularPainter1 class GradientCircularPainter1 extends CustomPainter {final double progress;GradientCircularPainter1(this.progress);overridevoid paint(Canvas canvas, Size size) {c…

VCNet论文阅读笔记

VCNet论文阅读笔记 0、基本信息 信息细节英文题目VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments翻译VCNet和功能目标正则化用于学习连续处理的因果效应单位芝加哥大学年份2021论文链接[2103.07861] VCNet和功能定向正…

OpenCV特征检测(5)检测图像中的角点函数cornerMinEigenVal()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 计算用于角点检测的梯度矩阵的最小特征值。 该函数类似于 cornerEigenValsAndVecs,但它计算并存储协方差矩阵导数的最小特征值&…

2024上海工博会,正运动激光振镜运动控制器应用预览(二)

■展会名称: 第二十四届中国国际工业博览会(以下简称“上海工博会”) ■展会日期 2024年9月24日–28日 ■展馆地点 中国国家会展中心(上海) ■展位号 6.1H-E261 正运动激光加工控制解决方案主要分为激光振镜运动…

24 小时不关机的挂机云电脑,还能这么玩?

云电脑技术为我们提供了无限可能。特别是对于游戏爱好者,挂机云电脑不仅解决了传统电脑的局限性,还带来了更为便利的游戏体验。除此之外云电脑还有什么其他玩法呢? 01 挂机云电脑的优势 首先要知道,什么是挂机云电脑&#xff1f…

解锁自动化新境界:KeymouseGo,让键盘和鼠标动起来!

文章目录 解锁自动化新境界:KeymouseGo,让键盘和鼠标动起来!背景:为何选择KeymouseGo?KeymouseGo简介安装KeymouseGo简单函数使用应用场景常见问题与解决方案总结 解锁自动化新境界:KeymouseGo,…

操作系统 | 学习笔记 | | 王道 | 5.1 I/O管理概述

5.1 I/O管理概述 5.1.1 I/O设备 注:块设备可以寻址,但是字符设备是不可寻址的 I/O设备是将数据输入到计算机中,或者可以接收计算机输出数据的外部设备,属于计算机中的硬件部件; 设备的分类 按使用特性分类&#xff…

from tqdm.auto import tqdm用法详细介绍

tqdm 是一个 Python 库,用于在长时间运行的任务中显示进度条。tqdm.auto 是 tqdm 的一个版本,能够自动适配输出环境(如 Jupyter Notebook、命令行等),以确保进度条在各种环境下显示正确。下面是 tqdm.auto 的详细用法介…

英飞凌 PSoC6 评估板 RT-Thread 开发环境搭建

本文介绍如何搭建基于 RT-Thread Studio IDE 工具的 PSoC6 RTT 评估板的开发环境,通过搭建一个简单的工程,将代码编译、下载到 PSoC6 RTT 开发板。 安装软件包 首先需要安装 RT-Thread Studio,如果你还没安装,可以点击这里下载安…

MySQL 中的 UTF-8 与 UTF8MB4:差异解析

在 MySQL 数据库中,字符集的选择对于数据的存储和处理至关重要。其中,UTF-8 和 UTF8MB4 是两个常见的字符集选项。那么,它们之间到底有什么区别呢? 一、字符集简介 UTF-8 UTF-8(8-bit Unicode Transformation Format&…

中伟视界:AI边端云一体化管控平台的特色功能介绍及其工作原理

在当前的数字化浪潮中,人工智能(AI)与物联网(IoT)技术逐渐渗透到各行各业,而如何在复杂、多层次的技术环境中高效管理和控制这些系统,成为了企业追求自动化、智能化发展的关键挑战。为了满足这种…

docker-compose up 报错:KeyError: ‘ContainerConfig‘

使用命令查看所有容器: docker ps -a 找到有异常的容器删除 docker rm {容器id} 后续发现还是会出现这种情况,尝试使用更高版本的docker-compose后解决

Java开发-面试题-0035-Spring代理方式有哪些

Java开发-面试题-0035-Spring代理方式有哪些 更多内容欢迎关注我(持续更新中,欢迎Star✨) Github:CodeZeng1998/Java-Developer-Work-Note (技术)微信公众号:CodeZeng1998 (生活&…

【Python报错已解决】SyntaxError invalid syntax

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 专栏介绍 在软件开发和日常使用中,BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…

怎么解除BitLocker对磁盘的加密?

BitLocker是一种Windows操作系统内置的加密功能,用于保护用户的数据安全。它通过对整个磁盘进行加密,防止数据被未经授权的用户访问。BitLocker主要用于保护笔记本电脑和台式机中的重要数据,尤其是在设备丢失或被盗的情况下。怎么解除BitLock…

【Redis入门到精通二】Redis核心数据类型(String,Hash)详解

目录 Redis数据类型 1.String类型 (1)常见命令 (2)内部编码 2.Hash类型 (1)常见命令 (2)内部编码 Redis数据类型 查阅Redis官方文档可知,Redis提供给用户的核心数据…

Redhat 7,8,9系(复刻系列) 一键部署Oracle19c rpm

Oracle19c前言 Oracle 19c 是甲骨文公司推出的一款企业级关系数据库管理系统,它带来了许多新的功能和改进,使得数据库管理更加高效、安全和可靠。以下是关于 Oracle 19c 的详细介绍: 主要新特性 多租户架构:支持多租户架构,允许多个独立的数据库实例在同一个物理服务器上…

鸿蒙开发之ArkUI 界面篇 十四 个人中心导航界面

鸿蒙要实现如图效果,代码简洁到令人难以置信: 整体布局是水平方向的,用row容器,左边是Image加载图标,中间是Text。右边也是Image加载图片,主轴子组件之间的距离用justifyContent(FlexAlign.SpaceBetween)&a…