从0开始深度学习(28)——序列模型

序列模型是指一类特别设计来处理序列数据的神经网络模型。序列数据指的是数据中的每个元素都有先后顺序,比如时间序列数据(股票价格、天气变化等)、自然语言文本(句子中的单词顺序)、语音信号等。

1 统计工具

前面介绍了卷积神经网络架构,但是在处理序列数据时,需要新的神经网络架构,下面以股票价格为例:
在这里插入图片描述
我们用 x t x_{t} xt表示价格,其中 t t t表示时间步(time step),也就是在时间步 t t t时观察到的价格 x t x_{t} xt,我们通过下列公式来表示我们预测第 t t t日的价格:
x t ∼ P ( x t ∣ x t − 1 , … , x 1 ) . x_t \sim P(x_t \mid x_{t-1}, \ldots, x_1). xtP(xtxt1,,x1).
即,在已知 1 1 1 t − 1 t-1 t1 的价格,求第 t t t 天的价格的概率分布。

1.1 自回归模型

为了实现这个预测,可以使用自回归模型:假设当前值 y t y_{t} yt 与过去的值 y t − 1 , y t − 2 , . . . y t − p y_{t-1} , y_{t-2} , ...y_{t-p} yt1,yt2,...ytp 之间存在线性关系,一般形式为 :
在这里插入图片描述
其中:
在这里插入图片描述
大致分为两种策略:
①自回归模型: 假设在现实情况下相当长的序列 x t − 1 , … , x 1 x_{t-1}, \ldots, x_1 xt1,,x1可能是没价值的,因此我们只需要满足某个长度为 τ \tau τ的时间跨度, 即使用观测序列 x t − 1 , … , x t − τ x_{t-1}, \ldots, x_{t-\tau} xt1,,xtτ。也就是说过长的历史序列可能并不必要,因此只需要关注较短的一段历史数据即可。因为只考虑观测值本身,所以叫自回归模型

②隐变量自回归模型: 即保留一些对过去观测的总结 h t h_{t} ht,这个“总结”是无法直观解释的,它是模型自助捕捉的内部关系依赖,然后同时更新预测值 x ^ t \hat{x}_t x^t h t h_t ht,即变为下列式子: x ^ t = P ( x t ∣ h t ) 和 h t = g ( h t − 1 , x t − 1 ) \hat{x}_t = P(x_t \mid h_{t}) 和h_t = g(h_{t-1}, x_{t-1}) x^t=P(xtht)ht=g(ht1,xt1)由于 h t h_{t} ht h t h_{t} ht从未被观测到,这类模型也被称为隐变量自回归模型,这里做出一个假设,即序列本身的动力学(数据随时间演变的方式)不会改变,意味着我们可以用过去的数据来推断未来的趋势,因为我们假定基本的动态规则是一致的。因此,整个序列的概率值可以表示为一系列条件概率的乘积:
P ( x 1 , … , x T ) = ∏ t = 1 T P ( x t ∣ x t − 1 , … , x 1 ) . P(x_1, \ldots, x_T) = \prod_{t=1}^T P(x_t \mid x_{t-1}, \ldots, x_1). P(x1,,xT)=t=1TP(xtxt1,,x1).
注意,如果我们处理的是离散的对象(如单词), 而不是连续的数字,则上述的考虑仍然有效。我们需要使用分类器而不是回归模型来估计

1.2 马尔可夫模型

马尔可夫条件: 在自回归模型中,如果 t t t 时刻的数值,只与 x t − 1 , … , x t − τ x_{t-1}, \ldots, x_{t-\tau} xt1,,xtτ 有关,而不是整个过去的序列,则称其满足马尔可夫条件。

如果 τ = 1 \tau = 1 τ=1 ,则得到了一个一阶马尔可夫模型 P ( x ) P(x) P(x)由如下公式表示:
P ( x 1 , … , x T ) = ∏ t = 1 T P ( x t ∣ x t − 1 ) 当  P ( x 1 ∣ x 0 ) = P ( x 1 ) . P(x_1, \ldots, x_T) = \prod_{t=1}^T P(x_t \mid x_{t-1}) \text{ 当 } P(x_1 \mid x_0) = P(x_1). P(x1,,xT)=t=1TP(xtxt1)  P(x1x0)=P(x1).
若当假设 x t x_t xt 仅是离散值时,可以使用动态规划可以沿着马尔可夫链精确地计算结果。

2 训练、预测

下面我们将用一个正弦函数和一些噪声生成1000个序列数据,并使用自回归模型进行训练和预测

2.1 生成数据

import torch
from torch import nn
import matplotlib.pyplot as plt
import numpy as np
from torch.utils.data import TensorDataset, DataLoaderT=1000
time=torch.arange(1,T+1,dtype=torch.float32)
x=torch.sin(0.01*time)+torch.normal(0,0.2,(T,))
# 绘制折线图
plt.plot(time, x)
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Time Series Data')
plt.show()

运行结果
在这里插入图片描述

2.2 构造数据集

我们是准备用 y t = F ( X t ) y_t=F(X_t) yt=F(Xt),其中 X t = [ x t − τ , … , x t − 1 ] X_t= [x_{t-\tau}, \ldots, x_{t-1}] Xt=[xtτ,,xt1],我们这里假设 τ = 4 \tau=4 τ=4,即用前四个数据来预测下一个数据,但是这样的话,前 4 4 4 个数据就没有历史样本去描述了,一般的做法是直接舍弃,或者用零序列去填充

这里我们用600个数据进行训练,剩余的用于预测。

构建数据集时,使用滑动窗口去构建:
在这里插入图片描述

# 构造数据集
tau=4# 初始化特征矩阵,因为前四个值就是当前值的特征
features = torch.zeros((T - tau, tau))
for i in range(T - tau): # 用滑动窗口进行构建features[i,:]=x[i:tau+i]
print('features:',features.shape)
print(features[:5])labels = x[tau:].reshape((-1, 1))
print('labels:',labels.shape)
print(labels[:5])batch_size = 16
n = 600  # 只有前600个样本用于训练
dataset = TensorDataset(features[:n], labels[:n])
train_iter = DataLoader(dataset, batch_size=batch_size, shuffle=False)

运行结果
在这里插入图片描述

2.3 构造模型进行训练

# 构造模型
def init_weights(m):if type(m)==nn.Linear:nn.init.xavier_uniform_(m.weight)def net():net=nn.Sequential(nn.Linear(4,10),nn.ReLU(),nn.Linear(10,1))net.apply(init_weights)return net# 评估模型在给定数据集上的损失
def evaluate_loss(net, data_iter, loss):"""评估模型在给定数据集上的损失"""net.eval()  # 设置模型为评估模式total_loss = 0.0with torch.no_grad():  # 不计算梯度for X, y in data_iter:y_hat = net(X)l = loss(y_hat, y)total_loss += l.sum().item()  # 计算总损失net.train()  # 恢复模型为训练模式return total_loss / len(data_iter.dataset)loss=nn.MSELoss(reduction='none')
lr=0.01
net=net()
optimzer=torch.optim.Adam(net.parameters(),lr)
loss_sum=[]
num_epoch=20
def train(net,num_epoch,train_iter,loss,optimzer,loss_sum):for epoch in range(num_epoch):for x,y in train_iter:optimzer.zero_grad()l=loss(net(x),y)l.sum().backward()optimzer.step()temp=evaluate_loss(net,train_iter,loss)loss_sum.append(temp)print("epoch ",epoch+1,": loss:",temp)train(net,num_epoch,train_iter,loss,optimzer,loss_sum)# 绘制折线图
plt.plot(range(num_epoch), loss_sum)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()

运行结果
在这里插入图片描述

2.4 预测

# 使用模型进行预测
def predict(net, data_iter):net.eval()  # 设置模型为评估模式predictions = []with torch.no_grad():  # 不计算梯度for X, y in data_iter:y_hat = net(X)predictions.extend(y_hat.numpy())net.train()  # 恢复模型为训练模式return predictions# 获取测试集的预测结果
predictions = predict(net, test_iter)# 绘制预测结果与真实值的对比图
true_values = labels[n:].numpy()
plt.plot(true_values, label='True Values')
plt.plot(predictions, label='Predictions')
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
plt.show()

运行结果
在这里插入图片描述

2.5 多步预测

# 多步预测
def multistep_predict(net, data_iter, steps):net.eval()  multistep_predictions = []with torch.no_grad():  for X, y in data_iter:current_features = X.clone()for _ in range(steps):'''在每一步中,模型用 current_features 作为输入,并预测出 y_hat。然后将 y_hat 拼接到 current_features 的末尾,同时移除 current_features 的第一个时间步,保持输入长度不变。这样,y_hat 成为下一步的输入'''y_hat = net(current_features)current_features = torch.cat([current_features[:, 1:], y_hat], dim=1)multistep_predictions.extend(y_hat.numpy())net.train() return multistep_predictions# 获取测试集的不同步数的多步预测结果
steps = [4, 16, 32]
multistep_predictions = {step: multistep_predict(net, test_iter, step) for step in steps}# 绘制结果
plt.figure(figsize=(12, 6))  # 设置图像的宽度为12英寸,高度为6英寸
plt.plot(true_values, label='True Values')
plt.plot(ones_predictions, label='1-step Predictions')
for step, preds in multistep_predictions.items():plt.plot(preds, label=f'{step}-step Predictions')
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
plt.show()

在这里插入图片描述
上述的多步预测是迭代预测法,即用自己预测数据再去预测下一个数据,另一种方法是seq2seq,后面在介绍,迭代预测法如下图所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/9665.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Xcode无线真机调试

文章目录 Xcode无线真机调试前提条件无线真机调试 Xcode无线真机调试 前提条件 iPhone和Xcode连接在同一WIFI下;或 Xcode通过iPhone的IP地址进行连接;Xcode版本支持无线调试功能; 无线真机调试 首次使用,需要通过数据线连接MAC…

暴雨讲堂|AI算力芯片王者GPGPU是什么?

在AI飞速发展的这几年,市场上涌现一大批诸如DPU、NPU、TPU、IPU等“XPU”的新概念,是真的存在不同的架构,还是只是一些厂商营销出来的噱头?事实上,从CPU的发展角度来看,这些XPU都不是真正的处理器。相反&am…

行车记录打不开?原因分析与数据恢复全攻略

行车记录遭遇困境 行车记录仪,作为现代驾驶中的重要设备,不仅能够帮助我们记录行车过程,还能在关键时刻提供有力的证据。然而,当行车记录突然打不开时,这无疑给车主们带来了不小的困扰。行车记录打不开,可…

SpringMVC总结 我的学习笔记

SpringMVC总结 我的学习笔记 一、SpringMVC简介1.MVC2.SpringMVC概述3. SpringMVC中的核心组件4.SpringMVC核心架构流程 二、SpringMVC框架实例具体实现使用注解实现 四、数据处理及跳转1.结果跳转方式2.处理器方法的参数与返回值处理提交数据数据显示到前端 五、RestFul风格1.…

云计算基础1

声明 学习视频来自B站UP主泷羽sec,如涉及侵权马上删除文章 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负 云计算基础概念 一、云计算的定义 云计算是一种资源交付和使用模式,指通过网络获得应用所需的…

Guava限流神器:RateLimiter使用指南

1. 引言 可能有些小伙伴听到“限流”这个词就觉得头大,感觉像是一个既复杂又枯燥的话题。别急,小黑今天就要用轻松易懂的方式,带咱们一探RateLimiter的究竟。 想象一下,当你去超市排队结账时,如果收银台开得越多&#…

被复线远传节点机JR-IPAM-1600

产品描述 JR-IPAM-1600J是一款被复线远传节点机,通过传统双绞线电缆(被复线\网线\对数电缆\矿用电缆等),用户就可以快速组成一个高速的传输网、局域网。它具有传输速率高、运行稳定、快速安装部署的特点,设备特有的AU…

【React】React 生命周期完全指南

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 React 生命周期完全指南一、生命周期概述二、生命周期的三个阶段2.1 挂载阶段&a…

自定义springCloudLoadbalancer简述

概述 目前后端用的基本都是springCloud体系; 平时在dev环境开发时,会把自己的本地服务也注册上去,但是这样的话,在客户端调用时请求可能会打到自己本地,对客户端测试不太友好. 思路大致就是前端在请求头传入指定ip&a…

Vue3-子传父

1. 主组件 App.vue(父组件) 在 App.vue 中,我们先引入了子组件 SonCom,这个小家伙将在父组件中出场。 接着,我们写了一个叫 getMessage 的函数。这个函数的任务很简单——接收子组件传来的消息,然后用 con…

vue--vueCLI

何为CLI ■ CLI是Command-Line Interface,俗称脚手架. ■ 使用Vue.js开发大型应用时,我们需要考虑代码目录结构、项目结构和部署、热加载、代码单元测试等事情。(vue 脚手架的作用), 而通过vue-cli即可:vue-cli 可以…

基于 JAVASSM(Java + Spring + Spring MVC + MyBatis)框架开发一个医院挂号系统

基于 JAVASSM(Java Spring Spring MVC MyBatis)框架开发一个医院挂号系统是一个实用的项目。 步骤一:需求分析 明确系统需要实现的功能,比如: 用户注册和登录查看医生列表预约挂号查看预约记录取消预约管理员管…

Golang--反射

1、概念 反射可以做什么? 反射可以在运行时动态获取变量的各种信息,比如变量的类型,类别等信息如果是结构体变量,还可以获取到结构体本身的信息(包括结构体的字段、方法)通过反射,可以修改变量的值,可以调用关联的方法…

计算机网络 TCP/IP体系 数据链路层

一. 数据链路层的基本概念 数据链路层主要负责节点之间的通信,确保从物理层接收到的数据能够准确无误地传输到网络层。 数据链路层使用的信道主要有以下两种类型: 点对点信道: 这种信道使用一对一的点对点通信方式。广播信道: 这种信道使用一对多的广播通信方式,…

使用注解装配Bean

!!!仅用作学习笔记记录!!! 一、一些概念: 1.定义Bean的注解: 在实际开发中分别使用Repository、Service与Controller对实现类进行标注。 2.注入Bean组件装配的注解 Autowired默认…

csa文件管理账号管理练习

1、查看/etc/passwd文件的第18-20行内容,并将找到的内容存储至/home/passwd文件中(head,tail,>,>>) # head -num 显示文件头num行 # tail -num :显示文件的最后num行 # 输出重定向 > # 使用…

软考高级架构 - 8.1 - 系统质量属性与架构评估 - 超详细讲解+精简总结

第8章 系统质量属性与架构评估 软件系统属性包括功能属性和质量属性,而软件架构重点关注质量属性。 8.1 软件系统质量属性 8.1.1 概述 软件系统的质量反映了其与需求的一致性,即:软件系统的质量高低取决于它是否能满足用户提出的需求&#…

初见Linux:基础开发工具

前言: 这篇文章我们将讲述Linux的基本开发工具,以及讨论Linux的生态圈,最后再了解vim开发工具。 Yum: YUM(Yellowdog Updater Modified)是一个在Linux系统中用于管理软件包的工具,特别是在基于…

电信基站智能计量新方案:DJSF1352双通讯直流计量电表——安科瑞 丁佳雯

随着信息技术的飞速发展和5G时代的到来,电信基站作为信息传输的重要基础设施,其能耗管理和运营效率成为各大运营商关注的焦点。为了应对日益增长的能耗需求和复杂的运维挑战,采用高效、智能的计量方案显得尤为重要。在这样的背景下&#xff0…

Pytorch cuda版本选择(高效简洁版)

简而言之 Pytorch cuda版本选择 只需要低于cuda驱动版本即可,cuda驱动版本查看命令是nvidia-smi, nvcc -V 是runtimeapi版本可以不用管 1.只要看cuda驱动版本 安装pytorch 选择cuda版本,只要看你电脑cuda驱动版本即可。 2.选择依据 pytorch中cuda版本只…