竞赛保研 基于卷积神经网络的乳腺癌分类 深度学习 医学图像

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于卷积神经网络的乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示

    dataset trainbenignb1.jpgb2.jpg//malignantm1.jpgm2.jpg//  validationbenignb1.jpgb2.jpg//malignantm1.jpgm2.jpg//...

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

  import jsonimport mathimport osimport cv2from PIL import Imageimport numpy as npfrom keras import layersfrom keras.applications import DenseNet201from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoardfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.utils.np_utils import to_categoricalfrom keras.models import Sequentialfrom keras.optimizers import Adamimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import cohen_kappa_score, accuracy_scoreimport scipyfrom tqdm import tqdmimport tensorflow as tffrom keras import backend as Kimport gcfrom functools import partialfrom sklearn import metricsfrom collections import Counterimport jsonimport itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))malign_train = np.array(Dataset_loader('data/train/malignant',224))benign_test = np.array(Dataset_loader('data/validation/benign',224))malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))malign_train_label = np.ones(len(malign_train))benign_test_label = np.zeros(len(benign_test))malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)X_test = np.concatenate((benign_test, malign_test), axis = 0)Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])np.random.shuffle(s)X_train = X_train[s]Y_train = Y_train[s]s = np.arange(X_test.shape[0])np.random.shuffle(s)X_test = X_test[s]Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11)w=60h=40fig=plt.figure(figsize=(15, 15))columns = 4rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint])

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_reportclassification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/823196.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

RAID卡

目录 一、RAID概述 二、常见类型 (一)RAID 0 (二)RAID 1 (三)RAID 5 (四)RAID 6 (五)RAID 10 (六)总结 三、创建RAID &…

几代WiFi有什么差异,它们有什么区别

最典型的差异指标:单流传输速率 第一代 基于的标准: 802.11 使用频率:2.4GHz 单流最大传输速率:2Mbit/s 第二代 基于的标准: 802.11b 使用频率:2.4GHz 单流最大传输速率:11Mbit/s 第三代 …

新版 macos下安装python 2.7 python 3.x多版本简单方法 pyenv python多版本管理工具

在新版本的macos中已经将默认的python升级成了3.x , 今天介绍一个简单的方法在新版本的macos中快速安装 python 2.7的方法, 就是使用brew安装python版本管理工具 pyenv来安装python2.7 # 安装pyenv版本管理工具 brew install pyenv # 安装python2.7 可以安装多个版本的ptyhon…

论文阅读——Slide-Transformer(cvpr2023)

Slide-Transformer: Hierarchical Vision Transformer with Local Self-Attention 一、分析 1、改进transformer的几个思路: (1)将全局感受野控制在较小区域,如:PVT,DAT,使用稀疏全局注意力来…

Linux:apache优化(3)—— 页面缓存时间

作用:通过 mod_expires 模块配置 Apache,使网页能在客户端浏览器缓存一段时间,以避免重复请求,减轻服务端工作压力。启用 mod_expires 模块后,会自动生成页面头部信息中的 Expires 标签和 CacheControl 标签&#xff0…

利用 IntelliJ IDEA 整合 GitHub 实现项目版本控制与协作管理

目录 前言1 设置GitHub登录账号2 将项目分享到GitHub3 IntelliJ IDEA 中导入Github项目4 往GitHub推送代码4.1 Commit Change(提交到本地库)4.2 Git -> Repository -> Push(推送到远程库) 5 拉取远程库代码到本地6 克隆远程…

08-React路由(Router 6版本)

Router5和Router6的变化 部分标签产生了变化,之前的标签都有了替(主要集中在Route匹配上),所以这里先回顾一下Router5,同时引出Router6的一些新特性 其次,React官方在推出Router6之后,就明确推…

【linux】Linux管道的原理与使用场景

Linux管道是Linux命令行界面中一种强大的工具,它允许用户将多个命令链接起来,使得一个命令的输出可以作为另一个命令的输入。这种机制使得我们可以创建复杂的命令链,并在处理数据时提供了极大的灵活性。在本文中,我们将详细介绍Li…

Python新手教程 —— Hello, World!

文章目录 Hello, World!作者自述关于本系列什么是编程语言什么是Python安装Python运行Python3解释器IDLE编写代码文件 本文复习Python技术资源分享1、Python所有方向的学习路线2、学习软件3、入门学习视频4、实战案例5、清华编程大佬出品《漫画看学Python》6、Python副业兼职与…

力扣刷题记录(22)LeetCode:714、300、674

714. 买卖股票的最佳时机含手续费 直接分析状态&#xff1a; 1.持有股票 可以是持续上一次持有股票的状态可以是买入当前股票 2.不持有股票 可以是持续上一次不持有股票的状态可以是卖出当前股票 class Solution { public:int maxProfit(vector<int>& prices, i…

轻松调整视频时长,创意与技术的新篇章

传统的视频剪辑工具往往难以精确控制时间&#xff0c;而【媒体梦工厂】凭借其先进的算法和界面设计&#xff0c;让视频时长的调整变得简单而精确&#xff0c;助你释放无限的创意&#xff0c;用技术为你的创意插上翅膀&#xff0c;让每一秒都有意义。 所需工具&#xff1a; 一…

sheng的学习笔记-【中】【吴恩达课后测验】Course 4 -卷积神经网络 - 第二周测验

课程4_第2周_测验题 目录 第一题 1.在典型的卷积神经网络中&#xff0c;随着网络的深度增加&#xff0c;你能看到的现象是&#xff1f; A. 【  】 n H n_H nH​和 n W n_W nW​增加&#xff0c;同时 n C n_C nC​减少 B. 【  】 n H n_H nH​和 n W n_W nW​减少&#x…

【C语言】随机数的生成

文章目录 前言rand函数srand函数time函数设置随机数的范围猜数字游戏的实现总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; C语言中的随机数生成是编程中常见的需求之一&#xff0c;用于模拟随机性、增加程序的变化性&#xff0c;或者进行一些涉及概…

《分布式事务理论基础:CAP定理 BASE理论》

目录 学习目标 1.分布式事务理论基础 1.1.本地事务 1.2.分布式事务 分布式事务产生的原因&#xff1f; 哪些场景会产生分布式事务&#xff1f; 单体系统会产生分布式事务问题吗&#xff1f; 只有一个库&#xff0c;会产生分布式事务问题吗&#xff1f; 分布式事务举…

数据预处理时,怎样处理类别型特征?

1. 序号编码 序号编码通常用于处理类别间具有大小关系的数据。例如成绩&#xff0c;可以分为低、中、高三档&#xff0c;并且存在“高>中>低”的排序关系。序号编码会按照大小关系对类别型特征赋予一个数值ID&#xff0c;例如高表示为3、中表示为2、低表示为1&#xff0…

C语言——扫雷

扫雷是一款经典的小游戏&#xff0c;那如何使用C语言实现一个扫雷游戏呢&#xff1f; 一、全部源码 直接把全部源码放在开头&#xff0c;如有需要&#xff0c;直接拿走。 源码分为三个文件&#xff1a; test.cpp/c 主函数的位置 #include "game.h"int main() {…

22款奔驰S450L升级主动式氛围灯 浪漫婉转的氛围感

主动式氛围灯有263个可多色渐变的LED光源&#xff0c;营造出全情沉浸的动态光影氛围。结合智能驾驶辅助系统&#xff0c;可在转向或检测到危险时&#xff0c;予以红色环境光提示&#xff0c;令光影艺术彰显智能魅力。配件有6个氛围灯&#xff0c;1个电脑模块。 1、气候&#xf…

MySQL 执行过程

MySQL 的执行流程也确实是一个复杂的过程&#xff0c;它涉及多个组件的协同工作&#xff0c;故而在面试或者工作的过程中很容易陷入迷惑和误区。 MySQL 执行过程 本篇将以 MySQL 常见的 InnoDB 存储引擎为例&#xff0c;为大家详细介绍 SQL 语句的执行流程。从连接器开始&…

Elasticsearch:升级索引以使用 ELSER 最新的模型

在此 notebook 中&#xff0c;我们将看到有关如何使用 Reindex API 将索引升级到 ELSER 模型 .elser_model_2 的示例。 注意&#xff1a;或者&#xff0c;你也可以通过 update_by_query 来更新索引以使用 ELSER。 在本笔记本中&#xff0c;我们将看到使用 Reindex API 的示例。…

如何安装ubuntu kylin(优麒麟)系统

半个月前(2020-12-25)&#xff0c;优麒麟官方发布消息说&#xff0c;优麒麟与 CodeWeavers 公司积极合作适配&#xff0c;正式推出 CrossOver 优麒麟版本&#xff0c;使优麒麟系统能够兼容运行 Windows 应用。将微信(crossover版) 和 QQ(crossover版) 上架麒麟软件商店。 优麒…