【C++】vector

一、vector的介绍及使用


1.1 vector的介绍

vector的底层与string相似都是顺序表形式管理数组,本质上来说string就可以归入到vector里面,但是在实际使用中,字符有很多自身独有的接口设计需要,因此string被单独拿出来设计。在前面string的介绍使用后,本文不会再详细介绍一些常见接口的使用(C++分装的特性,STL各个接口设计都差不多,阅读文档即可学会使用)


vector的文档介绍
使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学

1.2 vector的使用

vector学习时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中
我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的。

1.2.1 vector的定义

(constructor)构造函数声明接口说明
vector()(
vector()(重点)无参构造
vector(size_type n, const value_type& val =
value_type())
开辟n的空间,并初始化为val,缺省值传value_type()
vector (const vector& x); (重点)拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构

注:文档中vector的很多看起来复杂的类型,其实都是通过typedef封装的其他类型,上文中vector(size_type n, const value_type& val =value_type()),意思是我们传入对应要存储的内置类型或者自定义类型,然后传入需要初始值,如果不传,vector会调用对应类型的构造函数

需要补充的一点是内置内型也拥有的构造函数的概念,int就是0,指针就是nullptr等

int a();
int b(10);
int* p();
#define _CRT_SECURE_NO_WARNINGS#include <iostream>
using namespace std;
#include <vector>//    vector的构造int TestVector1()
{// constructors used in the same order as described above:vector<int> first;                                // 整形的空vectorvector<int> second(4, 100);                       // vector开辟4个整形空间并初始化为100vector<int> third(second.begin(), second.end());  // 通过second的迭代器初始化vector<int> fourth(third);                       // third的拷贝构造// 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分// the iterator constructor can also be used to construct from arrays:int myints[] = { 16,2,77,29 };vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));cout << "The contents of fifth are:";for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)cout << ' ' << *it;cout << '\n';return 0;
}void test_vector1()
{vector<int> v1;vector<int> v2(10, 1);vector<int> v3(++v2.begin(), --v2.end());for (size_t i = 0; i < v3.size(); i++){cout << v3[i] << " ";}cout << endl;vector<int>::iterator it = v3.begin();while (it != v3.end()){cout << *it << " ";++it;}cout << endl;for (auto e : v3){cout << e << " ";}cout << endl;
}void test_vector5()
{vector<string> v1;//vector中也可以存储自定义类型string s1("xxxx");v1.push_back(s1);v1.push_back("yyyyy");for (const auto& e : v1){cout << e << " ";}cout << endl;vector<int> v(5, 1);vector<vector<int>> vv(10, v);//这里就相当于数组中存储数组,达到二维数组的效果vv[2][1] = 2;//重载的[]// vv.operator[](2).operator[](1) = 2;//实际上是这样,为了美观可以像二维数组一样访问//编译器特殊处理vv[2][1]这样就行for (size_t i = 0; i < vv.size(); i++){for (size_t j = 0; j < vv[i].size(); ++j){cout << vv[i][j] << " ";}cout << endl;}cout << endl;
}

1.2.2 vector iterator 的使用(STL中范围都是左闭右开,[begin,end))

iterator的使
接口说明
begin +
end(重点)
获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator
rbegin +
rend
获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator


//  vector的迭代器void PrintVector(const vector<int>& v)
{// const对象使用const迭代器进行遍历打印vector<int>::const_iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;
}void TestVector2()
{// 使用push_back插入4个数据vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);// 使用迭代器进行遍历打印vector<int>::iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;// 使用迭代器进行修改it = v.begin();while (it != v.end()){*it *= 2;++it;}// 使用反向迭代器进行遍历再打印// vector<int>::reverse_iterator rit = v.rbegin();auto rit = v.rbegin();while (rit != v.rend()){cout << *rit << " ";++rit;}cout << endl;PrintVector(v);
}

1.2.3 vector 空间增长问题

容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize(重点)改变vector的size
reserve (重点)改变vector的capacity

注:capacity的代码在vs和g++下分别运行会发现,vs 下capacity是按1.5倍增长的,g++是按2
倍增长的。不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
reserve只负责开辟空间,如果确定知道需要用多少空间,使用eserve提前开好空间,可以缓解vector增容的代价缺陷问题。
resize在开空间的同时还会进行初始化,影响size,resize的长度大于现有的capacity,会进行扩容,但是resize缩小字符时capacity不会改变。

//  vector的resize 和 reserve// reisze(size_t n, const T& data = T())
// 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充
// 注意:resize在增多元素个数时可能会扩容
void TestVector3()
{vector<int> v;// set some initial content:for (int i = 1; i < 10; i++)v.push_back(i);v.resize(5);v.resize(8, 100);v.resize(12);cout << "v contains:";for (size_t i = 0; i < v.size(); i++)cout << ' ' << v[i];cout << '\n';
}// 测试vector的默认扩容机制
void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow :
capacity changed : 1
capacity changed : 2
capacity changed : 3
capacity changed : 4
capacity changed : 6
capacity changed : 9
capacity changed : 13
capacity changed : 19
capacity changed : 28
capacity changed : 42
capacity changed : 63
capacity changed : 94
capacity changed : 141
g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow :
capacity changed : 1
capacity changed : 2
capacity changed : 4
capacity changed : 8
capacity changed : 16
capacity changed : 32
capacity changed : 64
capacity changed : 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

1.2.3 vector 增删查改

vector增删查改接口说明
push_back(重点)尾插
pop_back (重点)尾删
find查找。(注意这个是算法库实现,不是vector的成员接口)
insert 在position之前插入val
erase删除position位置的数据
swap交换两个vector的数据空间
operator[] (重点)像数组一样访问

//  vector的增删改查// 尾插和尾删:push_back/pop_back
void TestVector4()
{vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);auto it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;v.pop_back();v.pop_back();it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;
}// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{// 使用列表方式初始化,C++11新语法vector<int> v{ 1, 2, 3, 4 };// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入// 1. 先使用find查找3所在位置// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局findauto pos = find(v.begin(), v.end(), 3);if (pos != v.end()){// 2. 在pos位置之前插入30v.insert(pos, 30);}vector<int>::iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据v.erase(pos);it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;
}// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
void TestVector6()
{vector<int> v{ 1, 2, 3, 4 };// 通过[]读写第0个位置。v[0] = 10;cout << v[0] << endl;// 1. 使用for+[]小标方式遍历for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;vector<int> swapv;swapv.swap(v);cout << "v data:";for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;// 2. 使用迭代器遍历cout << "swapv data:";auto it = swapv.begin();while (it != swapv.end()){cout << *it << " ";++it;}// 3. 使用范围for遍历for (auto x : v)cout << x << " ";cout << endl;
}

1.2.4 vector 迭代器失效问题。(重点)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃);或者指针指向的空间含义发生变化(比如由于扩容导致的指向空间变化,或者挪动数值导致的指向数据不符预期),含义的不可控变化,也是一种迭代器的失效。
对于vector可能会导致其迭代器失效的操作有:
会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、
assign、push_back等。

#include <iostream>
using namespace std;
#include <vector>
int main()
{vector<int> v{ 1,2,3,4,5,6 };auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容//量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。*/while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}
2. 指定位置元素的删除操作--erase
#include <iostream>
using namespace std;
#include <vector>
int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理
论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end
的位置,而end位置是没有元素的,那么pos就失效了。此外删除pos位置之后,由于挪动,pos实质指向数据不是我们预期的数据,(因此删除vector中任意位置上元素
时,vs就认为该位置迭代器失效了。我们也可以理解成当然不同的平台处理不同,有的平台不会报错);
以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?

#include <iostream>
using namespace std;
#include <vector>
int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}return 0;
}
int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it);else++it;}return 0;
}

注:vector的erase会返回删除数据后迭代器的新位置,删除后的迭代器失效的行为不可控,我们需要更新一下,才可以使用

注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,除非发生越界等情况,否则程序不会报错,处理没有vs下极端;VS下一但对失效的迭代器进行处理,就会程序崩溃

// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{vector<int> v{ 1,2,3,4,5 };for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}
程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为 : 100
0 2 3 4 5 409 1 2 3 4 5
// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{vector<int> v{ 1,2,3,4,5 };vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);cout << *it << endl;while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}
程序可以正常运行,并打印:
4
4 5
// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{vector<int> v{ 1,2,3,4,5 };// vector<int> v{1,2,3,4,5,6};auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}for (auto e : v)cout << e << " ";cout << endl;return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM - 0 - 3 - centos 20220114]$ g++ testVector.cpp - std = c++11
[sly@VM - 0 - 3 - centos 20220114]$ . / a.out
1 3 5
======================================================== =
// 使用第二组数据时,程序最终会崩溃
[sly@VM - 0 - 3 - centos 20220114]$ vim testVector.cpp
[sly@VM - 0 - 3 - centos 20220114]$ g++ testVector.cpp - std = c++11
[sly@VM - 0 - 3 - centos 20220114]$ . / a.out
Segmentation fault

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行
结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的。

与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效,不过对于string的访问我们一般使用[]和范围for,不会主动使用迭代器,因此遇到迭代器报错的可能性非常低。

#include <string>
void TestString()
{string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20会string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it);++it;}
}

迭代器失效解决办法:在使用前,对迭代器重新赋值即可。

1.2.5 vector 在OJ中的使用。

1. 只出现一次的数字i
class Solution {
public:int singleNumber(vector<int>& nums) {int value = 0;for (auto e : nums){value ^= e;}return value;}
};
2. 杨辉三角OJ
// 涉及resize / operator[]
// 核心思想:找出杨辉三角的规律,发现每一行头尾都是1,中间第[j]个数等于上一行[j-1]+
[j]
class Solution {
public:
vector<vector<int>> generate(int numRows) {
vector<vector<int>> vv(numRows);
for(int i = 0; i < numRows; ++i)
{
vv[i].resize(i+1, 1);
}
for(int i = 2; i < numRows; ++i)
{
for(int j = 1; j < i; ++j)
{
vv[i][j] = vv[i-1][j] + vv[i-1][j-1];
}
}
return vv;
}
};

总结:通过上面的练习我们发现vector常用的接口更多是插入和遍历。遍历更喜欢用数组
operator[i]的形式访问,因为这样便捷。

以下是笔者提供的练习,读者可以自行尝试,提高对知识的掌握。

3. 删除排序数组中的重复项 OJ
4. 只出现一次的数ii OJ
5. 只出现一次的数iii OJ
6. 数组中出现次数超过一半的数字 OJ
7. 电话号码字母组合OJ

二、vector深度剖析及模拟实现

2.1 std::vector的核心框架接口的模拟实现bit::vector

#pragma once
#include<assert.h>
#include<list>
#include<string>namespace zlr
{template<class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;/*vector()//对于无参构造,我们没必要写,vector使用一般都要传参开空间{}*///但是拷贝构造也是构造函数的一种,因此当我们写了拷贝构造,编译器不会生成构造//编译器会因为没有合适的默认构造报错,所以这里象征性的写一下// C++11 前置生成默认构造,对于上诉的情况可以采用下面这种语法处理vector() = default;vector(const vector<T>& v){reserve(v.size());for (auto& e : v){push_back(e);}}// 类模板的成员函数,还可以继续是函数模版template <class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}vector(size_t n, const T& val = T()){reserve(n);for (size_t i = 0; i < n; i++){push_back(val);}}vector(int n, const T& val = T()){reserve(n);for (int i = 0; i < n; i++){push_back(val);}}void clear(){_finish = _start;}// v1 = v3/*vector<T>& operator=(const vector<T>& v){if (this != &v){clear();reserve(v.size());for (auto& e : v){push_back(e);}}return *this;}*/void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}// v1 = v3//vector& operator=(vector v)vector<T>& operator=(vector<T> v){swap(v);return *this;}~vector(){if (_start){delete[] _start;_start = _finish = _end_of_storage = nullptr;}}iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin() const{return _start;}const_iterator end() const{return _finish;}void reserve(size_t n){if (n > capacity()){size_t old_size = size();//记录原size长度T* tmp = new T[n];//memcpy(tmp, _start, old_size * sizeof(T));for (size_t i = 0; i < old_size; i++){tmp[i] = _start[i];}delete[] _start;_start = tmp;_finish = tmp + old_size;//size()底层通过指针相减得到size//但是_start指向新空间后size()就失效了//为了能够更新_finish,我们需要先记录原长度size_end_of_storage = tmp + n;}}void resize(size_t n, T val = T()){if (n < size()){_finish = _start + n;}else{reserve(n);while (_finish < _start + n){*_finish = val;++_finish;}}}size_t size() const{return _finish - _start;}size_t capacity() const{return _end_of_storage - _start;}bool empty() const{return _start == _finish;}void push_back(const T& x){// 扩容if (_finish == _end_of_storage){reserve(capacity() == 0 ? 4 : capacity() * 2);}*_finish = x;++_finish;}void pop_back(){assert(!empty());--_finish;}iterator insert(iterator pos, const T& x){assert(pos >= _start);assert(pos <= _finish);// 扩容if (_finish == _end_of_storage){size_t len = pos - _start;reserve(capacity() == 0 ? 4 : capacity() * 2);pos = _start + len;}iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;--end;}*pos = x;++_finish;return pos;}void erase(iterator pos){assert(pos >= _start);assert(pos < _finish);iterator it = pos + 1;while (it != end()){*(it - 1) = *it;++it;}--_finish;}T& operator[](size_t i){assert(i < size());return _start[i];}const T& operator[](size_t i) const{assert(i < size());return _start[i];}private:iterator _start = nullptr;iterator _finish = nullptr;iterator _end_of_storage = nullptr;};/*void print_vector(const vector<int>& v){vector<int>::const_iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;for (auto e : v){cout << e << " ";}cout << endl;}*/template<class T>void print_vector(const vector<T>& v){// 规定,没有实例化的类模板里面取东西,编译器不能区分这里const_iterator// 是类型还是静态成员变量,因此要加typename告诉编译器这是迭代器//typename vector<T>::const_iterator it = v.begin();auto it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;for (auto e : v){cout << e << " ";}cout << endl;}template<class Container>//vector存储的类型不确定,我们这里传模板可以自适应void print_container(const Container& v){/*auto it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;*/for (auto e : v){cout << e << " ";}cout << endl;}void test_vector1(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);for (size_t i = 0; i < v.size(); i++){cout << v[i] << " ";}cout << endl;vector<int>::iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;for (auto e : v){cout << e << " ";}cout << endl;print_vector(v);vector<double> vd;vd.push_back(1.1);vd.push_back(2.1);vd.push_back(3.1);vd.push_back(4.1);vd.push_back(5.1);print_vector(vd);}void test_vector2(){std::vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);print_container(v);/*v.insert(v.begin() + 2, 30);print_vector(v);*/int x;cin >> x;auto p = find(v.begin(), v.end(), x);if (p != v.end()){// insert以后p就是失效,不要直接访问,要访问就要更新这个失效的迭代器的值/*v.insert(p, 20);(*p) *= 10;*/p = v.insert(p, 40);(*(p+1)) *= 10;}print_container(v);}void test_vector3(){std::vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);print_container(v);// 删除所有的偶数auto it = v.begin();while (it != v.end()){if (*it % 2 == 0){it = v.erase(it);}else{++it;}}print_container(v);}void test_vector4(){int i = int();int j = int(1);int k(2);vector<int> v;v.resize(10, 1);v.reserve(20);print_container(v);cout << v.size() << endl;cout << v.capacity() << endl;v.resize(15, 2);print_container(v);v.resize(25, 3);print_container(v);v.resize(5);print_container(v);}void test_vector5(){vector<int> v1;v1.push_back(1);v1.push_back(2);v1.push_back(3);v1.push_back(4);print_container(v1);vector<int> v2 = v1;print_container(v2);vector<int> v3;v3.push_back(10);v3.push_back(20);v3.push_back(30);v1 = v3;print_container(v1);print_container(v3);}void test_vector6(){vector<int> v1;v1.push_back(1);v1.push_back(2);v1.push_back(3);v1.push_back(4);v1.push_back(4);v1.push_back(4);vector<int> v2(v1.begin(), v1.begin() + 3);print_container(v1);print_container(v2);list<int> lt;lt.push_back(10);lt.push_back(10);lt.push_back(10);lt.push_back(10);vector<int> v3(lt.begin(), lt.end());print_container(lt);print_container(v2);vector<string> v4(10,"1111111");print_container(v4);vector<int> v5(10);print_container(v5);vector<int> v6(10u, 1);print_container(v6);vector<int> v7(10, 1);print_container(v7);}void test_vector7(){vector<string> v;v.push_back("11111111111111111111");v.push_back("11111111111111111111");v.push_back("11111111111111111111");v.push_back("11111111111111111111");print_container(v);v.push_back("11111111111111111111");print_container(v);}
}

注:实现上诉接口后,如果想V6这样传值,是后报错的,因为vector既可以存储内置类型,也可以存储自定义内型,因此迭代器构造函数,我们使用的模板参数,基于相似的原因,传值的初始化值我们也使用模板参数。

因此,问题就产生了,编译器使用模板的原则是有更合适的就选更合适的。对于如果我们传入10,6,这两数字面量默认是int,size_t与int不是最匹配的,而对于第一个来说,参数是相同类型的模板参数,10,6类型也相同。因此传值情况与第一个函数相同,调用第一个函数,但是传入的值不是迭代器,程序报错。

对于这个问题,VS内部是通过写多个函数,以适应不同的传值情况。

2.2 使用memcpy拷贝问题

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问
题?

int main()
{bite::vector<bite::string> v;v.push_back("1111");v.push_back("2222");v.push_back("3333");return 0;
}

问题分析:
1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存
空间中
2. 如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型
元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅
拷贝。

结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为
memcpy是浅拷贝,浅拷贝之后,旧指针存储的地址会赋给新指针,新旧指针指向同一块空间,这就可能会引起内存泄漏甚至程序崩溃。

2.2 动态二维数组理解

// 以杨慧三角的前n行为例:假设n为5
void test2vector(size_t n)
{// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>bit::vector<bit::vector<int>> vv(n);// 将二维数组每一行中的vecotr<int>中的元素全部设置为1for (size_t i = 0; i < n; ++i)vv[i].resize(i + 1, 1);// 给杨慧三角出第一列和对角线的所有元素赋值for (int i = 2; i < n; ++i){for (int j = 1; j < i; ++j){vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];}}
}

bit::vector<bit::vector<int>> vv(n); 构造一个vv数组,数组的存储的元素是一位数组,则这个数据实质上就构成了动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素,如果n为5时如下所示:

vv中元素填充完成之后,如下图所示:

使用标准库中vector构建动态二维数组时与上图实际是一致的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/19132.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp Uview上传图片组件Upload会自动刷新

背景 最近在做跑团小程序&#xff0c;马上接近尾声了&#xff0c;今天新增一个团长增加活动页面&#xff1a; 然后一切准备就绪&#xff0c;发现了一个问题&#xff0c;当选择上传图片后&#xff0c;页面会自动刷新&#xff0c;把之前填写的信息全部重置了。奇怪了&#xff0c…

软件测试之缺陷管理

一、软件缺陷的基本概念 1、软件缺陷的基本概念主要分为&#xff1a;缺陷、故障、失效这三种。 &#xff08;1&#xff09;缺陷&#xff08;defect&#xff09;&#xff1a;存在于软件之中的偏差&#xff0c;可被激活&#xff0c;以静态的形式存在于软件内部&#xff0c;相当…

数字资产与大健康领域的知识宝藏:高效知识库搭建策略

在数字化时代&#xff0c;大健康领域的企业积累了丰富的数字资产&#xff0c;这些资产如同一座待挖掘的金矿&#xff0c;蕴含着巨大的价值。高效搭建知识库&#xff0c;能够将这些数字资产转化为企业竞争力。 数字资产与大健康领域知识宝藏 数字资产在大健康领域包括患者数据…

使用WebRTC实现点对点实时音视频通信的技术详解

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 使用WebRTC实现点对点实时音视频通信的技术详解 使用WebRTC实现点对点实时音视频通信的技术详解 使用WebRTC实现点对点实时音视频…

Leetcode打卡:最少翻转次数使二进制矩阵回文II

执行结果&#xff1a;通过 题目&#xff1a;3240 最少翻转次数使二进制矩阵回文II 给你一个 m x n 的二进制矩阵 grid 。 如果矩阵中一行或者一列从前往后与从后往前读是一样的&#xff0c;那么我们称这一行或者这一列是 回文 的。 你可以将 grid 中任意格子的值 翻转 &…

VTK知识学习(9)-空间变换

1、前言 在三维空间里定义的三维模型&#xff0c;最后显示时都是投影到二维平面&#xff0c;比如在屏幕上显示。 三维到二维的投影包括透视投影&#xff08;Perspective Projection&#xff09;和正交投影&#xff08;Orthogonale Projection&#xff09;。正交投影也叫平行投…

英伟达 Isaac Sim仿真平台安装体验

硬件配置、系统 RTX 3080RAM: 32Gi7-12700Fubuntu20.04 使用Omniverse launcher安装加载isaac sim 这种方法我并没有成功&#xff0c;因为启动的时候报错Failed to create any GPU devices, including an attempt with compatibility mode. 。后面我选择使用 isaac sim dock…

笔记02----重新思考轻量化视觉Transformer中的局部感知CloFormer(即插即用)

1. 基本信息 论文标题: 《Rethinking Local Perception in Lightweight Vision Transformer》中文标题: 《重新思考轻量化视觉Transformer中的局部感知》作者单位: 清华大学发表时间: 2023论文地址: https://arxiv.org/abs/2303.17803代码地址: https://github.com/qhfan/CloF…

LVGL-从入门到熟练使用

LVGL简介 LVGL&#xff08; Light and Versatile Graphics Library &#xff09;是一个轻量、多功能的开源图形库。 1、丰富且强大的模块化图形组件&#xff1a;按钮 、图表 、列表、滑动条、图片等 2、高级的图形引擎&#xff1a;动画、抗锯齿、透明度、平滑滚动、图层混合等…

【python系列】python数据类型的分类和比较

一、数据类型的定义 在程序设计的类型系统中&#xff0c;数据类型&#xff08;英语&#xff1a;Data type&#xff09;&#xff0c;又称资料型态、资料型别&#xff0c;是用来约束数据的解释。——Wikipedia 从定义我们可以看出来&#xff0c;数字类型的理解最主要的是约束数据…

SpringBoot(二十七)SpringBoot集成XRebel实现异常定位

之前我使用JRebel实现了IDEA热更新。 这几天我无聊的时候&#xff0c;研究了一下JRebel发现&#xff0c;好像不止JRebel一个插件&#xff0c;同时安装的还有一个XRebel插件&#xff0c;百度了一下&#xff0c;XRebel可以实现异常定位&#xff0c;还有方法的执行分析&#xff0c…

windows上部署flask程序

文章目录 前言一、准备工作二、配置 Gunicorn 或 uWSGI1.安装 Waitress2.修改启动文件来使用 Waitress 启动 Flask 应用3.配置反向代理&#xff08;可选&#xff09;4.启动程序访问 三.Flask 程序在 Windows 启动时自动启动1.使用 nssm&#xff08;Non-Sucking Service Manager…

python调用MySql保姆级教程(包会的)

目录 一、下载MySql 二、安装MySql 三、验证MySql是否OK 1、MySQL控制台验证 2、命令提示符cmd窗口验证 四、Python调用MySql 4.1 安装pysql 4.2 使用pysql 4.2.1、连接数据库服务器并且创建数据库和表 4.2.2 、将人脸识别考勤系统识别到的数据自动填入到数据库的表单中…

如何解决将长视频转换为易于处理的 Spacetime Patch 的问题?

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 将长视频转换为易于处理的 Spacetime Patch&#xff08;时空补丁&#xff09;是一项挑战&#xff0c;尤其是当视频内容复杂或包含长时间连续场景时。在计算机视觉和视频分析等领域&#xff0c;Spacetim…

大数据学习16之Spark-Core

1. 概述 1.1.简介 Apache Spark 是专门为大规模数据处理而设计的快速通用的计算引擎。 一种类似 Hadoop MapReduce 的通用并行计算框架&#xff0c;它拥有MapReduce的优点&#xff0c;不同于MR的是Job中间结果可以缓存在内存中&#xff0c;从而不需要读取HDFS&#xff0c;减少…

LeetCode 力扣 热题 100道(五)最长回文子串(C++)

最长回文子串 给你一个字符串 s&#xff0c;找到 s 中最长的 回文子串。 回文性 如果字符串向前和向后读都相同&#xff0c;则它满足 回文性 子字符串子字符串 是字符串中连续的 非空 字符序列。 动态规划法 class Solution { public:string longestPalindrome(string s) {i…

dropout层/暂退法

作用&#xff1a;正则化&#xff0c;缓解过拟合 实现方式&#xff1a; 在前向传播过程中&#xff0c;将该层的一部分神经元的输出特征随机丢掉&#xff08;设为 0&#xff09;&#xff0c;相当于随机消灭一部分神经元仅在训练期间使用&#xff0c;测试时没有神经元被丢掉。 正…

【圆上的连线——卡特兰数】

题目 思路 因为不相交&#xff0c;所以每个点最多连出一条线&#xff0c;所以参与连线的点一定是偶数个 我们按照选出点的数量 2&#xff0c;4 …… 2x 将答案划分&#xff0c;答案可以表示为 &#xff08;假设我们选出2x个点连线&#xff0c;假设方法数为 &#xff1a;2x个点参…

Pytest-Bdd-Playwright 系列教程(11):场景快捷方式

Pytest-Bdd-Playwright 系列教程&#xff08;11&#xff09;&#xff1a;场景快捷方式 前言1. 手动绑定场景的传统方法2. 场景快捷方式的自动绑定方法2.1 绑定所有场景2.2 绑定多个路径2.3 自动与手动绑定的结合 3. 示例&#xff1a;结合 Playwright 的实际应用3.1 项目目录结构…

day-17 反转字符串中的单词

利用split()函数和substring函数 code: class Solution {public String reverseWords(String s) {int m0;while(s.charAt(m) ){m;}ss.substring(m);String arr[]s.split("[\\s]");int narr.length;String ss"";for(int in-1;i>1;i--){ssssarr[i]"…