R语言数据分析案例45-全国汽车销售数据分析(可视化与回归分析)

一、研究背景

随着经济的发展和人们生活水平的提高,汽车已经成为人们日常生活中不可或缺的交通工具之一。汽车市场的规模不断扩大,同时竞争也日益激烈。对于汽车制造商和经销商来说,深入了解汽车销售数据背后的规律和影响因素,对于制定合理的生产计划、营销策略以及提高市场竞争力具有至关重要的意义。

本研究聚焦于起亚品牌的某款紧凑型 SUV 的销售数据。在当前汽车市场中,SUV 车型由于其空间大、通过性好等特点,深受消费者的喜爱。而紧凑型 SUV 市场作为 SUV 市场的一个重要细分领域,吸引了众多汽车品牌的参与。各品牌在这个细分市场中通过价格战、产品升级、营销创新等手段争夺市场份额。起亚作为知名的汽车品牌,其紧凑型 SUV 的销售情况不仅反映了自身的产品竞争力和营销策略的有效性,也在一定程度上反映了整个紧凑型 SUV 市场的动态。

二、研究意义

(一)对汽车企业的意义

1.优化生产与库存管理

通过对销售数据的分析,企业可以准确地把握市场需求的变化趋势。例如,根据不同时间段的销量波动,合理安排生产计划,避免库存积压或缺货现象的发生。对于销量较高的时间段,可以提前增加产量,确保市场供应;而对于销量较低的时期,则可以适当减少生产,降低库存成本。

2.制定精准营销策略

了解不同品牌之间的销量差异以及销量随时间的变化趋势,有助于企业制定有针对性的营销策略。例如,如果发现某一品牌在特定时间段内销量显著增加是由于特定的促销活动导致的,企业可以借鉴这种促销方式,在其他时间段或其他车型上进行推广。同时,分析不同城市的总销量情况,可以帮助企业在重点市场加大营销投入,在潜力市场挖掘新的销售增长点等

(二)对消费者的意义

1.提供购车参考

本研究揭示的汽车销售数据规律和影响因素,可以为消费者提供购车参考。例如,消费者可以了解到不同品牌、不同时间段的价格波动和销量情况,选择在价格优惠、促销活动丰富的时机购买心仪的车型。同时,消费者也可以通过分析不同城市的销售情况,了解到本地市场的价格水平和产品供应情况,做出更明智的购车决策。

2.促进市场健康发展

深入的汽车销售数据分析有助于规范汽车市场秩序。当企业能够根据市场需求合理定价和生产时,能够减少不正当竞争行为,如恶意价格战等,从而为消费者创造一个更加公平、健康的购车环境。

三、实证分析

代码和数据

代码报告和数据集

首先导入数据分析的基础的包,随后读取数据展示数据前五行:

library(ggplot2)
library(dplyr)
library(readr)
library(tidyr)
library(caret)
library(cluster)
library(factoextra)

随后读取数据展示数据前五行

# 读取数据集并指定编码
data <- read_csv("全国汽车销售数据.csv", locale = locale(encoding = "GBK"))
head(data,5)

图中展示了汽车销售数据的部分内容,通过head(data, 5)查看了前 5 行数据,这些数据包含 13 个变量。数据中的车系均为 “I8a84ca201...”,厂商是 “韩系 东风...”,车类为 “SUV”,品牌是 “起亚”,车型为 “智跑”,级别是 “紧凑”,时间都为 “17 2019...”,销量数据各不相同。

接下来查看数据特征的类型情况:

上图展示了汽车销售数据的部分内容。从车系和厂商列可以看出,所有数据都来自 “韩系 东风悦达起亚” 这一厂商,说明数据集中在这一品牌的车型上。车类、品牌和车型列显示所有车辆都是 “SUV” 类型,品牌为 “起亚”,车型为 “智跑”,进一步表明数据是针对该款车型的。。。。。。

接下来查看数据描述性统计分析的情况:

summary(data)

 在车系、厂商、车类、品牌、车型和级别列,由于所有数据都相同(如都是 “韩系 东风悦达起亚”“SUV”“起亚”“智跑”“紧凑”),所以只显示了数据类型和长度等信息。价格列的统计信息显示,最小值是 4.00,第一四分位数是 10.00,中位数是 14.00,均值是 18.04,第三四分位数是 22.00,最大值是 61.00,说明价格有一定的波动范围。

接下来对数据集进行可视化分析,首先查看销量分布情况:

ggplot(data, aes(x = 销量)) +geom_histogram(bins = 30, fill = "blue", color = "black") +geom_density(color = "red", size = 1) +ggtitle("销量分布") +xlab("销量") +ylab("频数") +theme(plot.title = element_text(hjust = 0.5),axis.title.x = element_text(hjust = 0.5),axis.title.y = element_text(hjust = 0.5))

从图中可以看到,大部分数据集中在销量较低的区域。具体而言,在 0 - 5000 的销量区间内,柱子的高度非常突出,这意味着在这个区间内的销量频次占据了绝大部分。。。。

接下来查看不同品牌的销量分布情况:

ggplot(data, aes(x = 品牌, y = 销量)) +geom_boxplot(fill = "lightblue", color = "black") +ggtitle("不同品牌的销量分布") +xlab("品牌") +ylab("销量") +theme(axis.text.x = element_text(angle = 90, hjust = 1),plot.title = element_text(hjust = 0.5),axis.title.x = element_text(hjust = 0.5),axis.title.y = element_text(hjust = 0.5))

 接下来探究一下销量随时间的变化趋势:

图中显示,销量在这几年间波动较大。最引人注目的是 2017 年出现了一个极高的销量峰值,几乎达到了 20000。。。。。

接下来查看销售规模与销量的关系

ggplot(data, aes(x = `销售规模(亿)`, y = 销量)) +geom_point(color = "green") +ggtitle("销售规模与销量的关系") +xlab("销售规模(亿)") +ylab("销量") +theme(plot.title = element_text(hjust = 0.5),axis.title.x = element_text(hjust = 0.5),axis.title.y = element_text(hjust = 0.5))

 接下来查看不同城市的总销量情况:

接下来对数据集进行模型建立分析:

# 创建线性回归模型
lm_model <- lm(销量 ~ 价格 + `销售规模(亿)`, data = data)# 模型评估
summary(lm_model)# 预测和计算均方误差和R2值
pred_lm <- predict(lm_model, newdata = data)
mse_lm <- mean((data$销量 - pred_lm)^2)
r2_lm <- summary(lm_model)$r.squared

 模型公式为销量与价格和销售规模(亿)的关系。残差统计显示其最小值为 -146481,最大值为 47149,四分位数分别为 -2777、-603 和 1328。系数方面,截距为 11200.668,价格系数为 -394.176,表明价格与销量负相关,销售规模系数为 355.189,显示其与销量正相关,且这些系数的 p 值都极小,具有高度显著性。

gbm_model <- gbm(销量 ~ 价格 + `销售规模(亿)`, data = data, distribution = "gaussian", n.trees = 100, interaction.depth = 3, shrinkage = 0.01, cv.folds = 5)
# 模型评估
summary(gbm_model)# 预测和计算均方误差和R2值
pred_gbm <- predict(gbm_model, newdata = data, n.trees = gbm.perf(gbm_model, method = "cv"))
mse_gbm <- mean((data$销量 - pred_gbm)^2)
r2_gbm <- 1 - (sum((data$销量 - pred_gbm)^2) / sum((data$销量 - mean(data$销量))^2))

梯度提升机回归模型(梯度提升机回归 - MSE: 32099261 , R2: 0.5863429) 

支持向量机模型:

svm_model <- svm(销量 ~ 价格 + `销售规模(亿)`, data = data, kernel = "radial")# 模型评估
summary(svm_model)# 预测和计算均方误差和R2值
pred_svm <- predict(svm_model, newdata = data)
mse_svm <- mean((data$销量 - pred_svm)^2)
r2_svm <- 1 - (sum((data$销量 - pred_svm)^2) / sum((data$销量 - mean(data$销量))^2))cat("支持向量机回归 - MSE:", mse_svm, ", R2:", r2_svm, "\n")

 

四、研究结论

本研究聚焦起亚一款紧凑型 SUV,车系与厂商信息单一,数据源于特定渠道。价格在 4.00 至 61.00 间波动且有统一标价情况,销量与销售规模波动剧烈,地域集中于江苏盐城,利于局部分析却难现整体市场全貌,易遗漏他地销售特性与趋势。线性回归模型能解约 65.5% 销量方差,价格负相关、销售规模正相关于销量,有统计显著性,但 MSE 显示预测有偏,模型有优化空间。梯度提升机:MSE 为 32099261,R² 是 0.5863429,销售规模影响远超价格,迭代中误差渐降但后期趋缓,优化遇阻。支持向量机:表现卓越,MSE 仅 6213528,R² 达 0.9199274,拟合佳,可为销量相关决策提供有力支撑。

从未来来看,数据收集方面,拓地域、增时间跨度,纳更多车型与市场因素,建更全数据库。模型优化上,融合模型优势或用新算法提精度与稳定性。销量提升时,依品牌与城市差异制精细策略,结合线上线下精准触客,关注市场与对手,调产品定位与销售方针,抢滩市场,促销量与份额双升。

创造不易,希望各位看官多多点赞留言!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/18999.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Java 网络编程:Socket 与网络通信

1 引言 在古代&#xff0c;由于通信不便利&#xff0c;人们利用鸽子的飞行能力和方向辨识能力&#xff0c;驯化鸽子进行消息传递&#xff0c;即所谓的“飞鸽传书”。在现代计算机网络中&#xff0c;套接字&#xff08;Socket&#xff09;扮演了类似的角色。套接字是应用程序通…

编程之路,从0开始:结构体详解

目录 前言 正文 1、结构体引入 2、结构体的声明 3、typedef 4、结构体的匿名声明 5、结构的自引用 &#xff08;1&#xff09;链表 &#xff08;2&#xff09;自引用 6、结构体内存对齐 &#xff08;1&#xff09;对齐规则 &#xff08;2&#xff09;题目 &#x…

Flink监控checkpoint

Flink的web界面提供了一个选项卡来监控作业的检查点。这些统计信息在任务终止后也可用。有四个选项卡可以显示关于检查点的信息:概述(Overview)、历史(History)、摘要(Summary)和配置(Configuration)。下面依次来看这几个选项。 Overview Tab Overview选项卡列出了以…

04-转录组下游分析-标准化、聚类、差异分析

准备工作 1.数据标准化 标准化前需要进行数据预处理 过滤低表达的基因&#xff0c;并检查是否有异常样本 以下是常见的几种过滤方式&#xff08;过滤的标准都可以自己调整&#xff09; 1&#xff1a;在至少在75%的样本中都表达的基因&#xff08;表达是指在某个样本中count值…

常见网络厂商设备默认用户名/密码大全

常见网络厂商的默认用户名/密码 01 思科 (Cisco) 设备类型&#xff1a;路由器、交换机、防火墙、无线控制器 默认用户名&#xff1a;cisco 默认密码&#xff1a;cisco 设备类型&#xff1a;网管型交换机 默认用户名&#xff1a;admin 默认密码&#xff1a;admin 02 华…

Spring 与 Spring MVC 与 Spring Boot三者之间的区别与联系

一.什么是Spring&#xff1f;它解决了什么问题&#xff1f; 1.1什么是Spring&#xff1f; Spring&#xff0c;一般指代的是Spring Framework 它是一个开源的应用程序框架&#xff0c;提供了一个简易的开发方式&#xff0c;通过这种开发方式&#xff0c;将避免那些可能致使代码…

【热门主题】000055 网络安全:构筑数字时代的坚固防线

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 【热…

鸿蒙中位置权限和相机权限

1.module.json5中添加相关权限和string.json中配置信息 2. import { hilog } from kit.PerformanceAnalysisKit; import { TAG } from ohos/hypium/src/main/Constant; import { bundleManager, common } from kit.AbilityKit; import { abilityAccessCtrl } from kit.Ability…

2024.6使用 UMLS 集成的基于 CNN 的文本索引增强医学图像检索

Enhancing Medical Image Retrieval with UMLS-Integrated CNN-Based Text Indexing 问题 医疗图像检索中&#xff0c;图像与相关文本的一致性问题&#xff0c;如患者有病症但影像可能无明显异常&#xff0c;影响图像检索系统准确性。传统的基于文本的医学图像检索&#xff0…

H.264/H.265播放器EasyPlayer.js网页直播/点播播放器关于播放的时候就有声音

EasyPlayer.js H5播放器&#xff0c;是一款能够同时支持HTTP、HTTP-FLV、HLS&#xff08;m3u8&#xff09;、WS、WEBRTC、FMP4视频直播与视频点播等多种协议&#xff0c;支持H.264、H.265、AAC、G711A、Mp3等多种音视频编码格式&#xff0c;支持MSE、WASM、WebCodec等多种解码方…

Redis 的代理类注入失败,连不上 redis

在测试 redis 是否成功连接时&#xff0c;发现 bean 没有被创建成功&#xff0c;导致报错 根据报错提示&#xff0c;需要我们添加依赖&#xff1a; <dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId>&l…

Prometheus结合K8s(一)搭建

公司之前K8s集群没有监控&#xff0c;top查看机器cpu使用率很高&#xff0c;为了监控pod的cpu和内存&#xff0c;集群外的mysql资源&#xff0c;初步搭建了Prometheus监控系统 提前准备镜像 docker.io/grafana/grafana 10.4.4 docker.io/prom/prometheus v2.47.2 docker.io/…

Vscode/Code-server无网环境安装通义灵码

Date: 2024-11-18 参考材料&#xff1a;https://help.aliyun.com/zh/lingma/user-guide/individual-edition-login-tongyi-lingma?spma2c4g.11186623.0.i0 1. 首先在vscode/code-server插件市场中安装通义插件&#xff0c;这步就不细说了。如果服务器没网&#xff0c;会问你要…

【划分型DP-约束划分个数】力扣813. 最大平均值和的分组

给定数组 nums 和一个整数 k 。我们将给定的数组 nums 分成 最多 k 个非空子数组&#xff0c;且数组内部是连续的 。 分数 由每个子数组内的平均值的总和构成。 注意我们必须使用 nums 数组中的每一个数进行分组&#xff0c;并且分数不一定需要是整数。 返回我们所能得到的最…

IDEA:2023版远程服务器debug

很简单&#xff0c;但是很多文档没有写清楚&#xff0c;wocao 一、首先新建一个远程jvm 二、配置 三、把上面的参数复制出来 -agentlib:jdwptransportdt_socket,servery,suspendn,address5005 四、然后把这串代码放到服务器中 /www/server/java/jdk1.8.0_371/bin/java -agentl…

centos安装jenkins

本机使用虚拟机centos 7.9.2009 安装gitlab&#xff0c;本机的虚拟机ip地址是 192.168.60.151&#xff0c; 步骤记录如下 1、下载jenkins&#xff0c;安装jenkins之前需要安装jdk jdk和jenkins的版本对应关系参考&#xff1a;Redhat Jenkins Packages Index of /redhat-stable…

蜀道山CTF<最高的山最长的河>出题记录

出这道题的最开始感觉就是,因为现在逆向的形式好多,我最开始学习的时候,经常因为很多工具,或者手段完全不知道,就很懵逼,很多师傅都出了各种类型的,我就想着给以前的"自己"出一道正常exe,慢慢调的题,为了不那么简单,我就选择了C(究极混淆,可能比rust好点),让大家无聊…

中伟视界:AI智能分析算法如何针对非煤矿山的特定需求,提供定制化的安全生产解决方案

非煤矿山智能化改造&#xff0c;除了政策文件&#xff0c;上级监管单位需要安装的AI智能分析算法功能之外的&#xff0c;矿方真正关心的&#xff0c;能解决矿方安全生产隐患的AI智能分析算法功能有哪些呢&#xff1f; 经过与矿方的现场交流沟通&#xff0c;收集第一现场人员对安…

如何生成python项目需要的最小requirements.txt文件?

今天咱们来聊聊 Python 项目中如何生成一个“最小的” requirements.txt 文件。我们都知道&#xff0c;当我们开发一个 Python 项目的时候&#xff0c;很多时候都会在一个虚拟环境中进行&#xff0c;这样一来&#xff0c;就能避免不同项目之间的依赖冲突。 可有时候&#xff0c…

每日论文22-24ESSERC一种54.6-65.1GHz多路径同步16振荡器

《A 54.6-65.1 GHz Multi-Path-Synchronized 16-Core Oscillator Achieving −131.4 dBc/Hz PN and 195.8 dBc/Hz FoMT at 10 MHz Offset in 65nm CMOS》24欧洲固态 本文是在60GHz 16核VCO的工作&#xff0c;主要亮点在于每一组中四个VCO之间的三路同步拓扑结构&#xff0c;有…