【大语言模型】ACL2024论文-14 任务:不可能的语言模型

【大语言模型】ACL2024论文-14 任务:不可能的语言模型


目录

文章目录

  • 【大语言模型】ACL2024论文-14 任务:不可能的语言模型
    • 目录
      • 摘要
      • 研究背景
      • 问题与挑战
      • 如何解决
      • 创新点
      • 算法模型
      • 实验效果
      • 重要数据与结论
      • 推荐阅读指数和推荐理由
    • 后记


任务:不可能的语言模型

摘要

本文探讨了大型语言模型(LLMs)是否能够学习人类认为可能和不可能的语言。尽管有观点认为LLMs无法区分这两者,但目前缺乏实验证据支持这一论断。研究者们开发了一系列不同复杂度的合成不可能语言,通过系统地改变英语数据的词序和语法规则来设计这些语言。这些语言构成了一个不可能性的连续体,从本质上不可能的语言(例如随机且不可逆的英语单词洗牌)到在语言学中常被认为不可能的语言(尤其是基于词数位置的规则)。研究者们报告了一系列评估,以测试GPT-2小型模型学习这些无可争议的不可能语言的能力,并在训练过程中的不同阶段进行这些评估,以比较每种语言的学习过程。核心发现是,与作为对照的英语相比,GPT-2在学习不可能的语言时遇到困难,挑战了核心主张。更重要的是,研究者们希望他们的方法能够开启一条富有成效的调查线,测试不同的LLM架构在各种不可能语言上的表现,以了解如何将LLM用作这些认知和类型学调查的工具。

研究背景

在自然语言处理(NLP)领域,大型语言模型(LLMs)如GPT-2、BERT等已经成为研究和应用的热点。这些模型通过在大量文本数据上进行预训练,能够捕捉到语言的复杂模式和结构,从而在各种NLP任务上取得了显著的性能。然而,关于LLMs是否能够学习人类认为不可能的语言,学术界一直存在争议。Chomsky等人认为LLMs无法区分可能和不可能的语言,这一观点对语言学方法论和LLMs作为稳健语言能力的基石的可行性具有重要影响。然而,这一观点缺乏广泛的正式分析和实验证据的支持。
在这里插入图片描述

问题与挑战

本研究面临的主要问题和挑战包括:

  1. 定义不可能的语言:在语言学中,对于什么是可能的语言,什么是不可能语言,缺乏共识。
  2. 设计实验:如何设计实验来测试LLMs学习不可能语言的能力。
  3. 评估模型性能:如何评估LLMs在这些不可能语言上的性能,并与学习自然语言的能力进行比较。
  4. 解释结果:如何解释模型在这些任务上的表现,以及这些表现对于理解LLMs的能力和局限性意味着什么。
    在这里插入图片描述

如何解决

研究者们通过以下步骤来解决上述问题和挑战:

  1. 构建不可能的语言:通过系统地改变英语数据的词序和语法规则,创建了一系列不同复杂度的合成不可能语言。
  2. 训练和评估模型:使用GPT-2小型模型在这些不可能语言上进行训练,并在训练过程中的不同阶段评估模型的性能。
  3. 比较学习过程:比较模型在不同不可能语言上学习过程,以及与学习自然语言(英语)的对比。
  4. 分析和解释结果:深入分析实验结果,探讨LLMs在学习和理解不可能语言方面的能力和局限性。

创新点

本研究的创新点包括:

  1. 不可能语言的构建:提出了一种系统的方法来构建不同复杂度的不可能语言,为研究LLMs提供了新的实验平台。
  2. 多阶段评估:在训练过程中的不同阶段评估模型性能,提供了对模型学习动态的深入理解。
  3. 对比分析:将模型在不可能语言上的表现与自然语言进行对比,揭示了LLMs在处理不同类型语言时的差异。
  4. 认知和类型学研究:为使用LLMs作为工具进行认知和类型学研究提供了新的视角和方法。

算法模型

本研究使用的算法模型是GPT-2小型模型,这是一种基于Transformer架构的自回归语言模型。GPT-2通过在大量文本数据上进行预训练,学习语言的复杂模式和结构。在本研究中,研究者们使用GPT-2小型模型来学习构建的不可能语言,并在训练过程中的不同阶段评估模型的性能。

实验效果

实验结果表明,与作为对照的英语相比,GPT-2在学习不可能的语言时遇到困难。具体来说:

  1. 实验1:通过测试集的困惑度(perplexity)来评估模型学习效率,发现在可能语言上训练的模型比在不可能语言上训练的模型学习得更高效。
  2. 实验2:使用惊奇度(surprisal)比较来更仔细地检查表现出基于计数的动词标记规则的语言,发现在可能语言上训练的GPT-2对不合语法的构造更感到惊讶,表明模型更倾向于自然语法规则。
  3. 实验3:通过因果抽象分析深入研究模型可能发展出的学习此类基于计数的语法规则的内部机制,发现模型发展出类似人类的解决方案来处理非人类语法模式。

这些结果挑战了Chomsky等人的观点,即LLMs无法区分可能和不可能的语言,并为进一步讨论LLMs作为语言学习模型以及人类语言的可能/不可能区别铺平了道路。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

重要数据与结论

实验中的关键数据和结论包括:

  1. 困惑度:在可能语言上训练的模型比在不可能语言上训练的模型具有更低的困惑度,表明前者学习得更高效。
  2. 惊奇度比较:在可能语言上训练的GPT-2对不合语法的构造更感到惊讶,表明模型更倾向于自然语法规则。
  3. 因果抽象分析:模型发展出类似人类的解决方案来处理非人类语法模式,表明GPT-2能够学习并适应非自然的语言结构。

推荐阅读指数和推荐理由

4.5


后记

如果您对我的博客内容感兴趣,欢迎三连击 (***点赞、收藏和关注 ***)和留下您的评论,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/17468.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

PFC(Priority-based Flow Control) 的 100 种优化方法

简单直接的东西不需要优化,只有弄巧成拙的东西才不断被修补,优化,没完没了。 昨天聊 RDMA 和无损网络,我还是一如既往喷 PFC,并提出一些等价想法,被怼异想天开。随后我换了群昵称和头像,若干分…

【网络】什么是路由器 (Router )网关设备(Gateway)?

路由器(Router),又称路径器或网关设备(Gateway),是一种重要的计算机网络设备。以下是关于路由器的详细解释: 一、路由器的定义与功能 定义:路由器是连接因特网中各局域网、广域网的…

Linux debian系统安装ClamTk开源图形用户界面(GUI)杀毒软件

一、ClamTk简介 ClamTk 是一个基于 ClamAV 的开源图形用户界面(GUI)杀毒软件。它使用 GTK2-Perl 脚本构建而成,支持32位与64位操作系统。ClamTk 提供了一个直观的用户界面,使得用户无需深入了解命令行即可完成大部分操作。它具备…

Java期末复习暨学校第八次上机课作业

Java期末复习暨学校第八次上机课作业: 第一题: 分别给出了一个无参构造方法和有参构造方法,然后针对半径给出了set和get方法。针对面积给出了getArea方法,返回面积的值。 针对周长给出getPerimeter方法,返回周长。最后…

ShardingSphere如何轻松驾驭Seata柔性分布式事务?

0 前文 上一文解析了 ShardingSphere 强一致性事务支持 XAShardingTransactionManager ,本文继续: 讲解该类介绍支持柔性事务的 SeataATShardingTransactionManager sharding-transaction-xa-core中关于 XAShardingTransactionManager,本文…

将 SQL 数据库连接到云:PostgreSQL、MySQL、SQLite 和云集成说明

在当今数据驱动型世界中,云技术已经完全改变了数据库的管理和扩展。SQL 数据库(包括 PostgreSQL、MySQL 和 SQLite)在相当长的一段时间内一直是开发人员的最爱。然而,为了响应对可扩展、适应性强且经济高效的解决方案日益增长的需…

Vulnhub靶场案例渗透[10]- Momentum2

文章目录 一、靶场搭建1. 靶场描述2. 下载靶机环境3. 靶场搭建 二、渗透靶场1. 确定靶机IP2. 探测靶场开放端口及对应服务3. 扫描网络目录结构4. 代码审计5. 反弹shell6. 提权 一、靶场搭建 1. 靶场描述 - Difficulty : medium - Keywords : curl, bash, code reviewThis wor…

STM32设计防丢防摔智能行李箱

目录 目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 1.电路图采用Altium Designer进行设计: 2.实物展示图片 三、程序源代码设计 四、获取资料内容 前言 随着科技的不断发展,嵌入式系统、物联网技术、智能设备…

前后端请求响应

引入 在之前的例子中,我们编写了一个简单的web类,我们运行启动类,启动内嵌的tomcat后就可以在浏览器通过特定的路径访问tomcat中的应用程序。 但之前编写的程序仅仅是个简单的java类,其并未实现某个接口或继承某个类&…

爬虫——数据解析与提取

第二节:数据解析与提取 在网络爬虫开发中,获取网页内容(HTML)是第一步,但从这些内容中提取有用的数据,才是爬虫的核心部分。HTML文档通常结构复杂且充满冗余信息,因此我们需要使用高效的解析工…

数据结构C语言描述3(图文结合)--双链表、循环链表、约瑟夫环问题

前言 这个专栏将会用纯C实现常用的数据结构和简单的算法;有C基础即可跟着学习,代码均可运行;准备考研的也可跟着写,个人感觉,如果时间充裕,手写一遍比看书、刷题管用很多,这也是本人采用纯C语言…

设计模式-策略模式

1. 策略模式 策略模式(Strategy Pattern)针对一组算法,将每一个算法封装到 具有共同接口 的独立的类中,从而使得它们可以相互替换。策略模式使得算法可以在不影响到客户端的情况下发生变化。 在软件开发中,经常会遇到…

FFmpeg 4.3 音视频-多路H265监控录放C++开发十四,总结编码过程,从摄像头获得数据后,转成AVFrame,然后再次转成AVPacket,

也就是将摄像头采集到的YUV 的数据换成 AVFrame,然后再次转成 AVPacket,那么这AVPakcet数据要怎么办呢?分为三种情况: 一种是将AVPacket存储成h264文件,由于h264编码器在将avframe变成avpacket的时候就是按照h264的格…

【srm,招标询价】采购电子化全流程,供应商准入审核,在线询价流程管理(JAVA+Vue+mysql)

前言: 随着互联网和数字技术的不断发展,企业采购管理逐渐走向数字化和智能化。数字化采购平台作为企业采购管理的新模式,能够提高采购效率、降低采购成本、优化供应商合作效率,已成为企业实现效益提升的关键手段。系统获取在文末…

Transformer学习笔记(一)

Transformer学习笔记 基于 3B1B 可视化视频 自注意力机制 1.每个词的初始嵌入是一个高维向量,只编码该单词含义,与上下文没有关联 2.对初始向量进行位置编码,在高维向量中编码进位置信息(单词在语言序列中的位置信息&#xff…

4.4.5 timer中断流向Linux(从interrupt log回放)

4.4.5 timer中断流向Linux(从interrupt log回放) 按上文所述,timer中断3已经记录到root domain的interrupt log。在《3.4.1.3 IPIPE interrupt log数据结构》中,已经讨论过interrupt log的记录与回放。本小结,讨论什么…

WinDefender Weaker

PPL Windows Vista / Server 2008引入 了受保护进程的概念,其目的不是保护您的数据或凭据。其最初目标是保护媒体内容并符合DRM (数字版权管理)要求。Microsoft开发了此机制,以便您的媒体播放器可以读取例如蓝光,同时…

基于redis完成延迟队列

添加依赖 使用redisson完成延迟队列效果 <!-- redisson依赖 --><dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.17.4</version> <!-- 请使用最新版本 --></dependency&g…

星辰资讯 | TiDB v7.5.4 v8.4.0 发版

作者&#xff1a; ShawnYan 原文来源&#xff1a; https://tidb.net/blog/6e299751 TiDB 8.4.0 DMR 发版 11 月 11 日&#xff0c;TiDB 8.4.0 版本发布&#xff0c;以下是该版本的一些关键特性和改进&#xff1a; 性能 分区表全局索引成为正式功能 &#xff1a;提高检索…

Spring基础

Spring基础 目录&#xff1a; 一、Spring框架简介 二、Spring容器机制 一、Spring框架简介 1. Spring发展历程 •在Spring兴起之前&#xff0c;Java企业级开发主要通过EJB (Enterprise JavaBean)完成。EJB是服务器端的组件模型&#xff0c;由于它过于依靠EJB容器&#xf…