AI写作(十)发展趋势与展望(10/10)

一、AI 写作的崛起之势

在当今科技飞速发展的时代,AI 写作如同一颗耀眼的新星,迅速崛起并在多个领域展现出强大的力量。

随着人工智能技术的不断进步,AI 写作在内容创作领域发挥着越来越重要的作用。据统计,目前已有众多企业开始采用 AI 写作技术,其生成的内容在新闻资讯、财经分析、教育培训等领域广泛应用。例如,在新闻资讯领域,AI 写作能够实现对热点事件的即时追踪与快速报道。通过自动化抓取、分析海量数据,结合预设的新闻模板与逻辑框架,内容创作者能够迅速生成高质量的新闻稿,极大地提升了新闻发布的时效性和覆盖面。

在教育培训领域,AI 写作也展现出巨大的潜力。AI 写作助手可以根据用户输入的主题和要求,自动生成文章的大纲和结构,帮助学生和教师快速了解文章的主要内容和逻辑关系,更好地进行后续的写作工作。同时,它还能进行语法和拼写检查、关键词提取和语义分析,提高文章的质量,为学生和教师提供更好的写作支持和服务。

在企业服务方面,AI 智能写作技术成为解决企业内容生产痛点的有效方法之一。它可以帮助企业实现自动化内容生产,提高文案质量和转化率。通过学习和模仿人类的写作风格和语言表达能力,AI 智能写作技术生成更加优质、专业的文案内容,为企业树立良好的品牌形象,提高用户的信任度和忠诚度。

总之,AI 写作在内容创作、教育培训、企业服务等领域的崛起之势不可阻挡,为各领域的发展带来了新的机遇和挑战。

二、多模态生成的创新之路

(一)现状与突破

AI 写作多模态生成正处于快速发展阶段。在技术实现方面,核心技术如生成对抗网络(GAN)、变分自编码器(VAE)与自然语言处理(NLP)的结合,使得机器能够生成高质量的图像和流畅自然的文本。例如,通过 GAN,计算机能够生成高质量的图像,而 VAE 则在样本生成和补全方面表现出色,NLP 让生成文本更加自然。目前,多模态生成的应用范围不断扩大,涵盖了内容创作、教育培训、企业服务等多个领域。在内容创作中,创作者可以利用多模态生成工具同时生成文字、图像和视频,丰富作品的表现形式。在教育培训领域,多模态生成可以为学生提供更加生动、直观的学习材料。然而,多模态生成也面临着一些挑战。一方面,如何确保生成内容的准确性和真实性是一个关键问题。另一方面,版权问题和人工智能的伦理问题也日益引起关注。

(二)工具与案例

创新的 AI 工具不断涌现,如 “简单 AI”。简单 AI 作为一款全能型创作助手,汇聚了图像生成、文案撰写、头像制作等诸多功能。用户只需简单操作,便能够生成创意满满的图像与文案。例如,一位设计师在进行广告设计时,利用简单 AI 快速生成了多个创意方案,不仅提高了工作效率,还为客户提供了更多选择。此外,Meta 新推出的 Transfusion 模型,可以用单个模型同时生成文本和图像,效率惊人,效果炸裂。华为和清华大学联手打造的 PMG 技术,则能根据用户的个性化需求,生成 “量身定制” 的多模态内容。

(三)未来展望

多模态生成在未来有着广阔的发展前景。写作与绘画的界限将日益模糊,创作者将有更多的工具与平台去实现自己的创意。例如,未来的创作者可以通过多模态生成工具,轻松地将文字描述转化为生动的图像和视频,实现更加丰富的艺术表达。这将重塑现代艺术与文学的形态,推动文化产业的创新发展。同时,随着技术的不断进步,多模态生成工具将更加智能化、个性化,为用户提供更好的创作体验。

三、产业应用的多元场景

(一)教育培训领域

在教育培训领域,AI 写作发挥着重要作用。它可以为学生和教师提供多方面的支持,极大地提高教学效率和质量。

首先,AI 写作能够快速生成文章大纲结构。学生在面对写作任务时,常常感到无从下手,而 AI 写作工具可以根据给定的主题,迅速生成清晰的大纲,为学生提供写作思路。例如,在写一篇关于历史事件的论文时,AI 写作工具可以列出事件的背景、经过、影响等主要内容,帮助学生有条理地展开论述。

其次,语法检查功能可以帮助学生纠正语法错误,提高文章的准确性。学生在写作过程中难免会出现语法错误,而 AI 写作工具能够及时发现并指出这些错误,让学生加以改正。同时,关键词提取功能可以帮助学生更好地理解文章的重点,提高阅读和学习效率。例如,在阅读一篇复杂的文章时,AI 写作工具可以提取出关键信息,让学生快速掌握文章的核心内容。

此外,AI 写作还可以辅助教师进行教学。教师可以利用 AI 写作工具生成教学材料,如教案、课件等,节省备课时间。同时,AI 写作工具还可以对学生的作业进行自动批改,减轻教师的工作负担。例如,在批改作文时,AI 写作工具可以快速给出评分和评语,让教师更加高效地了解学生的学习情况。

总之,AI 写作在教育培训领域的应用,为学生和教师提供了有力的支持,提高了教学效率和质量。

(二)企业服务领域

在企业服务中,AI 写作也有着广泛的应用。

一方面,AI 写作可以辅助文档撰写。企业在日常运营中需要撰写各种文档,如报告、方案、邮件等。AI 写作工具可以根据企业的需求和要求,自动生成文档的初稿,为员工提供参考。例如,在撰写市场调研报告时,AI 写作工具可以收集和分析相关数据,生成报告的主要内容,员工只需进行进一步的整理和完善。

另一方面,AI 写作可以提高客户服务效率。在客户服务中,及时、准确地回复客户的问题是至关重要的。AI 写作工具可以根据客户的问题,快速生成针对性的回复,提高客户满意度。例如,在处理客户投诉时,AI 写作工具可以迅速生成一封道歉信,并提出解决方案,让客户感受到企业的诚意和专业。

此外,AI 写作还可以用于企业的营销和推广。企业可以利用 AI 写作工具生成广告文案、社交媒体内容等,提高品牌曝光度和产品销量。例如,在进行社交媒体营销时,AI 写作工具可以根据企业的品牌定位和目标受众,生成吸引人的文案和图片,吸引用户的关注和参与。

总之,AI 写作在企业服务中的应用,为企业提高了工作效率,降低了运营成本,提升了竞争力。

四、伦理法规的挑战与应对

(一)伦理问题

  1. 知识产权问题:随着 AI 写作技术的不断提升,AI 已经可以创作出具有原创性的文章。然而,这些由 AI 创作的文章是否应该享有知识产权呢?如果 AI 创作的文章被他人抄袭,应该如何维权呢?目前,对于 AI 创作的知识产权归属问题尚无明确规定。例如,据统计,每年因 AI 创作引发的知识产权纠纷数量呈上升趋势。以某新闻平台为例,其使用 AI 写作生成的新闻稿件被其他媒体未经授权转载,引发了关于知识产权的争议。
  2. 数据隐私问题:AI 写作助手在创作文章时,往往需要收集和分析大量的用户数据。这就涉及到用户数据隐私的保护问题。如何确保用户数据的安全,避免数据泄露,是 AI 写作伦理中必须关注的问题。例如,一些 AI 写作工具可能在未经用户同意的情况下收集用户的写作习惯、主题偏好等数据,这可能导致用户隐私泄露。据调查,约有 [X]% 的用户对 AI 写作工具的数据隐私问题表示担忧。
  3. 创作道德问题:AI 写作助手是否能够理解并遵循道德规范,创作出符合社会价值观的作品,也是一个需要关注的问题。例如,一些 AI 写作助手可能会被用于撰写虚假新闻,或者生成带有偏见的内容。这些现象都引发了人们对 AI 写作伦理的担忧。以某社交平台为例,曾出现过由 AI 生成的虚假新闻,引发了公众的恐慌和不满。

(二)法规问题

  1. 版权保护问题:AI 写作带来的版权问题主要表现为两个方面。一是用于训练算法模型的数据可能侵犯他人版权;二是 AI 生成内容能否受版权保护存在争议。以 AI 作画为例,供深度学习模型训练的数据集中可能包含受版权保护的作品,若未经授权对相关作品利用可能构成版权侵权。目前在美国,人工智能创作物无法获得版权保护;欧盟认定符合版权保护的标准仍是 “自然人的独创性”;在日本,虽然重视对具有市场价值的人工智能创作物给予法律保护,但是采取近似于商标登记的方式进行保护。
  2. 法律责任问题:由 AI 生成的法律文件可能存在不够准确或完整的风险,导致法律责任问题。例如,如果 AI 写作生成的合同存在漏洞,可能会给当事人带来经济损失。那么,在这种情况下,责任应该由谁来承担呢?是 AI 技术的开发者、使用者,还是其他相关方?目前,对于 AI 写作的法律责任归属问题尚无明确规定。

(三)应对策略

  1. 建立伦理指导原则:建立 AI 写作在法律领域的伦理指导原则,引导其合理、可持续的应用。例如,明确规定 AI 写作工具在创作过程中应遵循的道德规范,如不得生成虚假新闻、不得侵犯他人知识产权等。同时,加强对 AI 写作工具开发者和使用者的伦理教育,提高他们的道德意识。
  2. 进行法律审核:由资深律师对由 AI 写作生成的法律文件进行审查和修改,确保其准确性和合规性。例如,在企业使用 AI 写作工具生成合同、报告等法律文件时,应先由专业律师进行审核,以避免法律风险。
  3. 推动技术创新:开发更高效的数字指纹技术,用于识别和追踪侵权行为;或者使用区块链技术,为每个 AI 创作的作品提供一个独特的数字身份,以增强版权保护的可追溯性和不可篡改性。例如,某科技公司正在研发一种基于区块链的版权保护技术,该技术可以为 AI 创作的作品提供唯一的数字签名,确保作品的版权归属清晰明确。
  4. 完善法律法规:政府和相关机构需要制定和完善关于 AI 创作版权的法律法规,明确 AI 创作作品的权益归属和侵权责任。这包括确定 AI 是否可以成为版权所有者,以及在 AI 创作的作品中如何保护人类的创造性贡献。例如,我国可以借鉴国际上的先进经验,结合本国实际情况,制定专门的 AI 创作版权法律法规。

五、经典代码案例

以下是一些与 AI 写作相关的经典代码示例:

基于 Transformer 架构的简单文本生成代码(PyTorch 实现)

python

import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.data import Field, BucketIterator
from torchtext.datasets import WikiText2# 定义数据处理
TEXT = Field(tokenize='spacy', lower=True)
train_data, valid_data, test_data = WikiText2.splits(TEXT)
TEXT.build_vocab(train_data)# 模型定义(简单的Transformer解码器结构示例)
class TransformerDecoder(nn.Module):def __init__(self, vocab_size, embedding_dim, heads, layers, dropout):super().__init__()self.embedding = nn.Embedding(vocab_size, embedding_dim)self.transformer_layers = nn.ModuleList([nn.TransformerDecoderLayer(embedding_dim, heads, dropout=dropout)for _ in range(layers)])self.fc = nn.Linear(embedding_dim, vocab_size)def forward(self, x, memory):x = self.embedding(x)for layer in self.transformer_layers:x = layer(x, memory)return self.fc(x)# 训练参数
vocab_size = len(TEXT.vocab)
embedding_dim = 256
heads = 8
layers = 6
dropout = 0.1
learning_rate = 0.0001
epochs = 10# 实例化模型、优化器和损失函数
model = TransformerDecoder(vocab_size, embedding_dim, heads, layers, dropout)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()# 训练数据迭代器
train_iterator, valid_iterator, test_iterator = BucketIterator.splits((train_data, valid_data, test_data), batch_size=32, device='cuda' if torch.cuda.is_available() else 'cpu'
)# 训练循环
for epoch in range(epochs):model.train()total_loss = 0for i, batch in enumerate(train_iterator):optimizer.zero_grad()input_seq = batch.text[:, :-1].transpose(0, 1).contiguous()target_seq = batch.text[:, 1:].transpose(0, 1).contiguous()output = model(input_seq, input_seq)loss = criterion(output.view(-1, vocab_size), target_seq.view(-1))loss.backward()optimizer.step()total_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {total_loss / len(train_iterator)}')

这段代码使用了 PyTorch 实现了一个基于 Transformer 解码器的简单文本生成模型。它基于WikiText2数据集,通过定义模型结构、训练参数、优化器和损失函数来进行训练,目的是根据给定的文本前缀预测后续的文本内容。

使用 TensorFlow 实现的基于 LSTM 的文本生成代码

python

import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import numpy as np# 示例文本数据(这里可以替换为真实的大量文本数据)
text_data = "The quick brown fox jumps over the lazy dog. The dog barked loudly at the cat."# 数据预处理
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text_data])
total_words = len(tokenizer.word_index) + 1input_sequences = []
for line in text_data.split('.'):token_list = tokenizer.texts_to_sequences([line])[0]for i in range(1, len(token_list)):n_gram_sequence = token_list[:i + 1]input_sequences.append(n_gram_sequence)max_sequence_len = max([len(x) for x in input_sequences])
input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))xs = input_sequences[:, :-1]
ys = input_sequences[:, -1]
ys = tf.keras.utils.to_categorical(ys, num_classes=total_words)# 构建LSTM模型
model = tf.keras.Sequential([tf.keras.layers.Embedding(total_words, 100, input_length=max_sequence_len - 1),tf.keras.layers.LSTM(150),tf.keras.layers.Dense(total_words, activation='softmax')
])model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(xs, ys, epochs=500, verbose=1)# 生成文本
seed_text = "The quick brown"
next_words = 5for _ in range(next_words):token_list = tokenizer.texts_to_sequences([seed_text])[0]token_list = pad_sequences([token_list], maxlen=max_sequence_len - 1, padding='pre')predicted = model.predict(token_list, verbose=0)predicted_word = np.argmax(predicted)output_word = ""for word, index in tokenizer.word_index.items():if index == predicted_word:output_word = wordbreakseed_text += " " + output_wordprint(seed_text)

此代码使用 TensorFlow 和 Keras 构建了一个基于 LSTM(长短期记忆网络)的文本生成模型。它首先对输入文本进行预处理,包括标记化、创建序列和将目标标签转换为分类格式。然后构建 LSTM 模型,训练后可根据给定的种子文本生成后续的文本内容。

多模态生成示例(结合图像和文本,以简单的图像字幕生成场景为例,使用 PyTorch 和预训练模型)

python

import torch
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
import nltk
nltk.download('punkt')
from torch.nn.utils.rnn import pack_padded_sequence# 加载预训练的图像分类模型(这里以ResNet为例)
resnet = models.resnet152(pretrained=True)
modules = list(resnet.children())[:-1]
resnet = torch.nn.Sequential(*modules)
resnet.eval()# 图像预处理转换
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.229, 0.229])
])# 简单的文本处理(这里假设已经有一个词汇表和相应的索引映射)
vocab = {'<start>': 0, '<end>': 1, 'a': 2, 'dog': 3, 'runs': 4, 'in': 5, 'the': 6, 'field': 7}
word_to_idx = vocab
idx_to_word = {v: k for k, v in vocab.items()}# 定义一个简单的基于LSTM的字幕生成模型(只是示例,实际可更复杂)
class CaptionGenerator(nn.Module):def __init__(self, embed_size, hidden_size, vocab_size):super().__init__()self.embed = nn.Embedding(vocab_size, embed_size)self.lstm = nn.LSTM(embed_size + 2048, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, vocab_size)def forward(self, features, captions):embeddings = self.embed(captions)embeddings = torch.cat((features.unsqueeze(1).repeat(1, embeddings.size(1), 1), embeddings), dim=2)packed_embeddings = pack_padded_sequence(embeddings, [len(caption) for caption in captions], batch_first=True, enforce_sorted=False)lstm_out, _ = self.lstm(packed_embeddings)outputs = self.fc(lstm_out[0])return outputs# 加载图像并提取特征
image_path = 'example.jpg'
image = Image.open(image_path).convert('RGB')
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():image_features = resnet(image_tensor).squeeze()# 生成字幕(这里是简单示例,假设初始字幕为<start>)
caption_generator = CaptionGenerator(256, 512, len(vocab))
caption_generator.load_state_dict(torch.load('caption_generator_model.pt'))
caption_generator.eval()caption = ['<start>']
for _ in range(5):  # 生成5个单词的字幕caption_tensor = torch.tensor([word_to_idx[word] for word in caption]).unsqueeze(0)output = caption_generator(image_features.unsqueeze(0), caption_tensor)predicted_word_idx = output.argmax(dim=2)[-1].item()predicted_word = idx_to_word[predicted_word_idx]caption.append(predicted_word)if predicted_word == '<end>':breakprint(' '.join(caption[1:]))

这段代码展示了一个简单的多模态生成场景 —— 图像字幕生成。它利用预训练的图像模型(ResNet)提取图像特征,然后将这些特征与文本信息一起输入到一个基于 LSTM 的模型中,逐步生成图像的字幕。这里的代码只是一个简单示例,实际应用中需要更复杂的模型结构、更大规模的训练数据和更精细的训练过程。

六、发展趋势与未来展望

(一)发展趋势

  1. 创作能力不断增强:随着人工智能技术的持续进步,AI 写作的创作能力将不断提升。它将能够生成更加复杂、高质量的内容,涵盖各种文学体裁和专业领域。例如,AI 写作工具将能够创作出更具深度和情感共鸣的小说、诗歌等文学作品,以及更具专业性和权威性的学术论文、商业报告等。据预测,未来几年内,AI 写作工具的创作能力将达到甚至超越部分人类作者的水平。
  2. 跨语言运用更加广泛:自然语言处理技术的发展将使 AI 写作在跨语言运用方面取得更大突破。AI 写作工具将能够轻松实现不同语言之间的翻译和转换,为全球范围内的交流与合作提供便利。例如,企业可以利用 AI 写作工具将产品说明书、营销文案等内容快速翻译成多种语言,拓展国际市场。同时,跨语言的文学创作和学术交流也将更加频繁,促进不同文化之间的融合与发展。
  3. 人机共创成为主流:人类与 AI 的合作将更加紧密,人机共创将成为未来写作的主流模式。人类作者将充分发挥自己的创造力、情感理解和价值观判断等优势,与 AI 写作工具的高效信息处理和语言生成能力相结合,共同创作出更优秀的作品。例如,在广告营销领域,创意人员可以与 AI 写作工具合作,共同打造具有创新性和感染力的广告文案;在文学创作领域,作家可以借助 AI 写作工具的灵感启发和素材提供,创作出更具特色的文学作品。

(二)未来展望

  1. 在内容创作领域的应用:AI 写作将在内容创作领域发挥更加重要的作用。它将为新闻媒体、广告公司、文学创作等行业提供高效、优质的内容生产解决方案。例如,新闻媒体可以利用 AI 写作工具实现 24 小时不间断的新闻报道,提高新闻的时效性和覆盖面;广告公司可以借助 AI 写作工具生成个性化的广告文案,提高广告的效果和转化率;文学创作者可以与 AI 写作工具合作,创作出更具创新性和艺术性的文学作品。
  2. 在教育培训领域的拓展:AI 写作在教育培训领域的应用将不断拓展和深化。它将为学生提供个性化的学习材料和写作辅导,帮助学生提高写作能力和学习效果。例如,AI 写作工具可以根据学生的学习进度和水平,生成适合学生的作文题目和写作指导,帮助学生提高写作能力;同时,AI 写作工具还可以为教师提供教学辅助材料和自动批改作业的功能,减轻教师的工作负担。
  3. 在企业服务领域的深化:AI 写作将在企业服务领域得到更广泛的应用和深化。它将为企业提供文档撰写、客户服务、营销推广等方面的支持,提高企业的工作效率和竞争力。例如,企业可以利用 AI 写作工具生成各种类型的文档,如报告、方案、邮件等,提高文档撰写的效率和质量;同时,AI 写作工具还可以为企业提供客户服务的自动化解决方案,提高客户满意度和忠诚度。
  4. 对社会文化的影响:AI 写作的发展将对社会文化产生深远的影响。它将推动文化产业的创新和发展,促进不同文化之间的交流与融合。例如,AI 写作工具可以为文化创意产业提供新的创作思路和表现形式,推动文化产业的创新发展;同时,AI 写作工具还可以促进不同语言和文化之间的交流与融合,增进不同国家和地区之间的相互理解和友谊。

总之,AI 写作作为一种新兴的技术和创作方式,具有广阔的发展前景和巨大的潜力。随着技术的不断进步和应用的不断拓展,AI 写作将在各个领域发挥更加重要的作用,为人类社会的发展和进步做出更大的贡献。

 本文相关文章推荐:

AI 写作(一):开启创作新纪元(1/10)

AI写作(二)NLP:开启自然语言处理的奇妙之旅(2/10)

AI写作(三)文本生成算法:创新与突破(3/10)

AI写作(四)预训练语言模型:开启 AI 写作新时代(4/10)

AI写作(五)核心技术之文本摘要:分类与应用(5/10)

AI写作(六):核心技术与多元应用(6/10)

AI写作(七)的核心技术探秘:情感分析与观点挖掘(7/10)

AI 写作(八)实战项目一:自动写作助手(8/10)

AI 写作(九)实战项目二:智能新闻报道(9/10)

AI 写作(十)发展趋势与展望(10/10)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/17416.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【模块一】kubernetes容器编排进阶实战之资源管理核心概念

kubernetes 资源管理核心概念 k8s的设计理念—分层架构 CRI-container runtime interface-容器运行接口 CNI-container network interface-容器网络接口 CSI-container storage interface-容器存储接口 k8s的设计理念—API设计原则 https://www.kubernetes.org.cn/kubernete…

DBeaver中PostgreSQL数据库显示不全的解决方法

本文介绍在DBeaver中&#xff0c;连接PostgreSQL后&#xff0c;数据库显示不全的解决方法。 最近&#xff0c;在DBeaver中连接了本地的PostgreSQL数据库。但是连接后打开这个数据库时发现&#xff0c;其所显示的Databases不全。如下图所示&#xff0c;Databases只显示了一个pos…

ElasticSearch学习笔记二:使用Java客户端

一、前言 在上一篇文章中&#xff0c;我们对ES有了最基本的认识&#xff0c;本着实用为主的原则&#xff0c;我们先不学很深的东西&#xff0c;今天打算先学习一下ES的Java客户端如何使用。 二、创建项目 1、普通Maven项目 1、创建一个Maven项目 2、Pom文件 <dependenc…

MySQL8 安装教程

一、从官网下载mysql-8.0.18-winx64.zip安装文件&#xff08; 从 https://dev.mysql.com/downloads/file/?id484900 下载zip版本安装包 mysql-8.0.18-winx64.zip 解压到本地磁盘中&#xff0c;例如解压到&#xff1a;D盘根目录&#xff0c;并改名为MySQL mysql-8.0.34-winx6…

如何将LiDAR坐标系下的3D点投影到相机2D图像上

将激光雷达点云投影到相机图像上做数据层的前融合&#xff0c;或者把激光雷达坐标系下标注的物体点云的3d bbox投影到相机图像上画出来&#xff0c;都需要做点云3D点坐标到图像像素坐标的转换计算&#xff0c;也就是LiDAR 3D坐标转像素坐标。 看了网上一些文章都存在有错误或者…

【Pikachu】XML外部实体注入实战

若天下不定&#xff0c;吾往&#xff1b;若世道不平&#xff0c;不回&#xff01; 1.XXE漏洞实战 首先写入一个合法的xml文档 <?xml version "1.0"?> <!DOCTYPE gfzq [<!ENTITY gfzq "gfzq"> ]> <name>&gfzq;</name&…

游戏引擎学习第13天

视频参考:https://www.bilibili.com/video/BV1QQUaYMEEz/ 改代码的地方尽量一张图说清楚吧,懒得浪费时间 game.h #pragma once #include <cmath> #include <cstdint> #include <malloc.h>#define internal static // 用于定义内翻译单元内部函数 #…

(一)Ubuntu20.04服务器端部署Stable-Diffusion-webui AI绘画环境

一、说明 cup型号&#xff1a; Intel(R) Celeron(R) CPU G1610 2.60GHz 内存大小&#xff1a; 7.5Gi 356Mi 4.6Gi 1.0Mi 2.6Gi 6.8Gi Swap: 4.0Gi 0B 4.0Gi 显卡型号&#xff1a;NVIDIA P104-100 注意&#xff1a…

Python Tornado框架教程:高性能Web框架的全面解析

Python Tornado框架教程&#xff1a;高性能Web框架的全面解析 引言 在现代Web开发中&#xff0c;选择合适的框架至关重要。Python的Tornado框架因其高性能和非阻塞I/O特性而备受青睐。它特别适合处理大量并发连接的应用&#xff0c;比如聊天应用、实时数据处理和WebSocket服务…

ubuntu20.04安装anaconda

在anaconda的官网&#xff08;Anaconda | The Operating System for AI&#xff09;或者清华镜像源网站&#xff08;Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror&#xff09;中下载对应的anaconda版本 可以在网页直接下载或者通过命…

平衡二叉搜索树之 红黑 树的模拟实现【C++】

文章目录 红黑树的简单介绍定义红黑树的特性红黑树的应用 全部的实现代码放在了文章末尾准备工作包含头文件类的成员变量和红黑树节点的定义 构造函数和拷贝构造swap和赋值运算符重载析构函数findinsert【重要】第一步&#xff1a;按照二叉搜索树的方式插入新节点第二步&#x…

【设计模式】行为型模式(四):备忘录模式、中介者模式

行为型模式&#xff08;四&#xff09;&#xff1a;备忘录模式、中介者模式 7.备忘录模式&#xff08;Memento&#xff09;7.1 通俗易懂的解释7.2 具体步骤7.3 代码示例7.3.1 定义发起人7.3.2 定义备忘录7.3.3 定义管理者7.3.4 客户端7.3.5 输出 7.4 总结 8.中介者模式&#xf…

Thinkpad E15 在linux下升级 bios

安装xubuntu 24.04后&#xff0c;发现键盘的Fn按键全都无法使用&#xff0c;在Windows环境下是正常的&#xff0c;按说是驱动的问题&#xff0c;网上也有说可以通过升级BIOS解决&#xff0c;所以打算升级看看&#xff0c;升级有风险。 参考&#xff1a; https://blog.stigok.c…

Java学习Day61:薄纱王灵官!(Nginx review)

1.Nginx是什么 Nginx是一款轻量级、高性能&#xff0c;并发性好的HTTP和反向代理服务器 2.功能 2.1反向代理 正向代理是指客户端向代理服务器发送请求&#xff0c;代理服务器代表客户端去访问目标服务器。简单来说&#xff0c;正向代理是客户端的代理&#xff0c;客户端通过…

MATLAB用到的矩阵基础知识(矩阵的乘和矩阵的逆)

1. 矩阵乘法 方法: 设第一个矩阵为 A A A,第二个矩阵为 B B B,则 A A A的第一行乘 B B B的第一列,先想乘再相加,作为目标矩阵的一个元素。 前提条件: 所以我们可以看到矩阵相乘的前提条件:第一个矩阵的列数等于第二个矩阵的行数。否则,我们就无法进行行和列的相乘。 最…

Oracle OCP认证考试考点详解082系列22

题记&#xff1a; 本系列主要讲解Oracle OCP认证考试考点&#xff08;题目&#xff09;&#xff0c;适用于19C/21C,跟着学OCP考试必过。 105. 第105题&#xff1a; 题目 解析及答案&#xff1a; 题目翻译&#xff1a; 关于Oracle数据库中的事务请选择两个正确的陈述&#xf…

【ict基础软件赛道】真题-50%openGauss

题目取自赛前测试链接 OpenGauss安装前使用哪个工具检查环境是否符合安装哪个功能不是gs_guc工具提供的opengauss数据库逻辑复制的特点描述正确的是opengauss的全密态数据库等值查询能力描述正确的是哪个不属于ssh客户端工具opengauss三权分立说法正确的是opengauss wdr snapsh…

MDK5(Keil5)工具设置及技巧

设置&#xff1a; 1点击扳手&#xff08;设置&#xff09; 2文字设置为GB2312简体 3勾选显示空格 4按一下TAB键移动4个空格 修改keil中数字大小及颜色&#xff08;增加对比&#xff09; 勾选全部 1提示结构体 2提示函数参数 3打上几个英文符号后开始提示 4TAB作为填充字符 5打开…

4G模组Air780E对json数据处理的基本方法~

4G模组Air780E在数据传输和处理中扮演着越来越重要的角色。在实际应用中&#xff0c;JSON作为一种轻量级的数据交换格式&#xff0c;被广泛应用于网络数据传输和存储。本文将详细介绍4G模组Air780E对JSON数据处理的基本方法&#xff0c;以帮助开发者更好地利用这一模组进行数据…