机器学习 ---线性回归

目录

摘要:

一、简单线性回归与多元线性回归

1、简单线性回归

2、多元线性回归

3、残差

二、线性回归的正规方程解

1、线性回归训练流程

2、线性回归的正规方程解

(1)适用场景

(2)正规方程解的公式

三、衡量线性回归的性能指标

四、scikit-learn线性回归实践 - 波斯顿房价预测

1、数据集介绍

2、LinearRegression

摘要:

        文章主要介绍了线性回归相关内容,包括简单线性回归与多元线性回归的概念及示例,阐述了残差的定义、在理想与非理想模型中的情况及意义,还讲解了线性回归的正规方程解,涵盖其适用场景、公式推导与代码实现,提及衡量线性回归性能指标可参考其他文章,最后以 scikit-learn 中的 LinearRegression 类为例,介绍了其在波士顿房价预测实践中的应用,包括数据集情况、类的常用参数及训练、预测函数的使用等。

一、简单线性回归与多元线性回归

1、简单线性回归

        在生活中,我们常常能碰到这么一种情况,一个变量会跟着另一个变量的变化而变化,如圆的周长与半径的关系,当圆的半径确定了,那么周长也就确定了。还有一种情况就是,两个变量之间看似存在某种关系,但又没那么确定,如青少年的身高与体重,他们存在一种近似的线性关系:
身高/cm = 体重/kg +105。
        但是,并不是每个青少年都符合这个公式,只能说每个青少年的身高体重都存在这么一种近似的线性关系。这就是其实就是简单的线性回归,那么,到底什么是线性回归呢?假如我们将青少年的身高和体重值作为坐标,不同人的身高体重就会在平面上构成不同的坐标点,然后用一条直线,尽可能的去拟合这些点,这就是简单的线性回归,如下图:

        简单的线性回归模型:y=wx+b

        其中x表示特征值(如:体重值),w表示权重,b表示偏置,y表示标签(如:身高值)。

2、多元线性回归

        简单线性回归中,一个变量跟另一个变量的变化而变化,但是生活中,还有很多变量,可能由多个变量的变化决定着它的变化,比如房价,影响它的因素可能有:房屋面积、地理位置等等。如果我们要给它们建立出近似的线性关系,这就是多元线性回归,多元线性回归模型如下:

y = b + w_{1}x_{1}+ w_{2}x_{2}+ ...+w_{n}x_{n}

其中,x_{n}表示第n个特征值,w_{i}表示第n个特征对应的权重,b表示偏置,y表示标签。

3、残差

  • 定义
    • 残差是指在回归分析中,观测值与预测值之间的差异,即e_{i}=y_{i}-\hat{y}_{i},其中\hat{y}_{i}是第个观测值,是对应的预测值。残差均值就是所有残差的平均值,即\bar{e}=\frac{1}{n}\sum_{i=1}^{n}e_{i},其中n是样本数量。
  • 在理想线性回归模型中的情况
    • 在理想的线性回归模型(基于普通最小二乘法估计参数)中,残差均值为零。这是因为普通最小二乘法的目标是最小化残差平方和。
    • 从几何角度看,线性回归是在寻找一条直线(在简单线性回归中)或一个超平面(在多元线性回归中),使得数据点到该直线或超平面的垂直距离(即残差)的平方和最小。在这个最优拟合的情况下,残差会在零附近分布,正残差和负残差相互抵消,导致残差均值为零。
  • 残差均值不为零的情况及意义
    • 如果残差均值不为零,这可能意味着模型存在偏差。例如,如果残差均值大于零,说明模型整体上低估了观测值;如果残差均值小于零,则说明模型整体上高估了观测值。
    • 这可能是由于模型设定不正确(如遗漏了重要的变量、函数形式错误等)或者数据存在异常情况(如存在离群点等)导致的。在实际应用中,残差均值是评估模型拟合质量的一个简单指标,发现残差均值不为零后,需要进一步分析模型和数据,以改进模型的拟合效果。

如果线性回归方程有多个解,可以如何解决?

解决方法包括但不限于:

  • 获取更多的训练样本
  • 选取样本有效的特征,使样本数量大于特征数
  • 加入正则化项

二、线性回归的正规方程解

1、线性回归训练流程

        以波士顿房价数据集为例,该数据集每条数据包括对指定房屋的13项数值型特征和目标房价组成:

        由数据集可以知道,每一个样本有13个特征与目标房价,而我们要做的事就是通过这13个特征来预测房价,我们可以构建一个多元线性回归模型,来对房价进行预测。模型如下:

y = b + w_{1}x_{1}+ w_{2}x_{2}+ ...+w_{n}x_{n}

        其中,x_{n}表示第n个特征值,w_{n}表示第n个特征对应的权重,b表示偏置,y表示目标房价。

        为了方便,我们稍微将模型进行变换(下面求解会用到):

y = w_{0}x_{0} + w_{1}x_{1}+ w_{2}x_{2}+ ...+w_{n}x_{n}

        其中x_{0}=1。令Y=\Theta X,其中\Theta =(w_{0},w_{1},w_{2},...,w_{n})X=(1,x_{1},x_{2},...,x_{n})

        而我们的目的就是找出能够正确预测的多元线性回归模型,即找出正确的参数\Theta。那么如何寻找呢?通常在监督学习里面都会使用这么一个套路,构造一个损失函数,用来衡量真实值与预测值之间的差异,然后将问题转化为最优化损失函数。既然损失函数是用来衡量真实值与预测值之间的差异,那么很多人自然而然的想到了用所有真实值与预测值的差的绝对值来表示损失函数。不过带绝对值的函数不容易求导,所以我们可以采用采用MSE(均方误差)作为损失函数(相关内容可以查看另一篇文章:机器学习 ---模型评估、选择与验证(1)),公式如下:

\frac{1}{m}\sum_{i = 1}^{m}(y^{i}-p^{i})^{2}

        其中y^{i} 表示第 i 个样本的真实标签,p^{i} 表示模型对第 i 个样本的预测标签,m为样本总个数。最后,我们再使用正规方程解来求得我们所需要的参数。线性回归模型训练流程如下:

2、线性回归的正规方程解

(1)适用场景

  • 数据集规模较小且特征数量不是很多的情况下,正规方程解是比较常用的(对于其他方法,比如梯度下降法等将在之后的文章中提到)。例如,当我们处理一些简单的实验数据或者小型的商业分析数据集时,假设特征数量m较小(比如m<1000),数据样本数量n也不大(比如n<10000)。
  • 因为正规方程解的公式在这种情况下计算起来相对简单直接。它不需要像梯度下降法那样进行多次迭代来收敛到最优解,只要能够计算矩阵的逆,就可以一次性得到参数θ的最优解
  • 例如,在一个简单的房价预测模型中,我们仅考虑房屋面积、房间数量这两个特征来预测房价。数据集包含 100 套房子的数据,通过正规方程解可以快速得到线性回归模型的参数,从而构建预测模型。

(2)正规方程解的公式

        对线性回归模型,假设训练集中m个训练样本,每个训练样本中有n个特征,可以使用矩阵的表示方法,预测函数可以写为:Y=\Theta X,其损失函数可以表示为:(Y-\Theta X)^{T}(Y-\Theta X)

其中,标签Y为m\times 1的矩阵,训练特征X为m\times (n+1)的矩阵,回归系数θ为(n+1)\times1的矩阵,对θ求导,并令其导数等于0,可以得到:X^{T}(Y-\Theta X)=0。所以,最优解为:

\Theta =(X^{T}X)^{-1}X^{T}Y

这个就是正规方程解,我们可以通过最优方程解直接求得我们所需要的参数。

代码实现:

import numpy as np
def mse_score(y_predict,y_test):'''input:y_predict(ndarray):预测值y_test(ndarray):真实值ouput:mse(float):mse损失函数值'''mse = np.mean((y_predict-y_test)**2)return mseclass LinearRegression :def __init__(self):'''初始化线性回归模型'''self.theta = Nonedef fit_normal(self,train_data,train_label):'''input:train_data(ndarray):训练样本train_label(ndarray):训练标签'''# 在训练数据的特征矩阵前面添加一列全为1的列,用于表示截距项X = np.hstack((np.ones((train_data.shape[0], 1)), train_data))# 根据正规方程公式计算模型参数theta# 先计算X的转置与X的乘积的逆矩阵inverse_term = np.linalg.inv(X.T.dot(X))# 再计算X的转置与训练标签的乘积product_term = X.T.dot(train_label)# 最后将逆矩阵与上述乘积相乘,得到模型参数thetaself.theta = inverse_term.dot(product_term)return self.theta

三、衡量线性回归的性能指标

        这部分在上面提到的另外一篇文章中有提到过,感兴趣的话可以去看一看,这里就不再过多赘述。

四、scikit-learn线性回归实践 - 波斯顿房价预测

1、数据集介绍

        波斯顿房价数据集共有506条波斯顿房价的数据,每条数据包括对指定房屋的13项数值型特征和目标房价组成。用数据集的80%作为训练集,数据集的20%作为测试集,训练集和测试集中都包括特征和目标房价。

数据集中部分数据与标签如下图所示:

2、LinearRegression

LinearRegression 是 scikit-learn 库(通常简称为sklearn)中用于实现线性回归算法的一个类。

LinearRegression的构造函数中有两个常用的参数可以设置:

  • fit_intercept:是否有截距,如果没有则直线过原点,默认为Ture。
  • normalize:是否将数据归一化,默认为False。

LinearRegression类中的fit函数用于训练模型,fit函数有两个向量输入:

  • X:大小为[样本数量,特征数量]的ndarray,存放训练样本。
  • Y:值为整型,大小为[样本数量]的ndarray,存放训练样本的标签值。

LinearRegression类中的predict函数用于预测,返回预测值,predict函数有一个向量输入:

  • X:大小为[样本数量,特征数量]的ndarray,存放预测样本。

        利用LinearRegression进行线性回归,代码及相应的注释如下:(此处仅为一个简单的线性回归的示例)

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import pandas as pd
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score# 加载波士顿房价数据集
boston = load_boston()# 将数据转换为DataFrame格式,这里的特征数据
train_data = pd.DataFrame(boston.data, columns=boston.feature_names)# 目标数据(房价)作为训练标签
train_label = pd.Series(boston.target)# 划分训练集和测试集,测试集占比可自行设置,这里设为0.2(即20%)
X_train, X_test, y_train, y_test = train_test_split(train_data, train_label, test_size=0.2, random_state=42)# 创建线性回归模型对象
lr = LinearRegression()# 模型训练
lr.fit(X_train, y_train)# 模型预测
pred = lr.predict(X_test)# 将预测结果转换为DataFrame
pred_df = pd.DataFrame({'result': pred})# 模型评估
mse = mean_squared_error(y_test, pred)
mae = mean_absolute_error(y_test, pred)
r2 = r2_score(y_test, pred)print("\n模型评估指标:")
print(f"均方误差(MSE): {mse}")
print(f"平均绝对误差(MAE): {mae}")
print(f"决定系数(R²): {r2}")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/16518.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

麒麟服务器日志采集(服务器端)

服务端配置接收模块和监听端口 vim /etc/rsyslog.conf Copy 在rsyslog.conf内输入以下内容 #### MODULES #### module(load"imudp") # needs to be done just once input(type"imudp" port"514") module(load"imtcp") # needs to …

物联网低功耗广域网LoRa开发(三):Lora人机界面

一、TFT液晶屏驱动开发 &#xff08;一&#xff09;驱动源码移植 &#xff08;二&#xff09;硬件接口初始化 根据硬件设计&#xff0c;LoRa与LCD共用SPI总线&#xff0c;且LCD_MISO用于命令/数据模式切换控制 需要修改gpio初始化源码&#xff0c;让片选接口拉高(三)TFT液晶屏…

Android setTheme设置透明主题无效

【问题现象】 1、首先&#xff0c;你在AndroidManifest.xml中声明一个activity&#xff0c;不给application或者activity设置android:theme, 例如这样&#xff1a; <applicationandroid:allowBackup"true"android:icon"mipmap/ic_launcher"android:lab…

JavaScript--定时器

一.定义 关于JavaScript中的计时事件&#xff1f; JavaScript 一个设定的时间间隔之后来执行代码&#xff0c;我们称之为计时事件&#xff08;菜鸟说…&#xff09; 二.方法 2.1计时器 setInterval() &#xff1a; 是什么&#xff1a;这个方法设置一个定时器&#xff0c;…

数据分析-48-时间序列变点检测之在线实时数据的CPD

文章目录 1 时间序列结构1.1 变化点的定义1.2 结构变化的类型1.2.1 水平变化1.2.2 方差变化1.3 变点检测1.3.1 离线数据检测方法1.3.2 实时数据检测方法2 模拟数据2.1 模拟恒定方差数据2.2 模拟变化方差数据3 实时数据CPD3.1 SDAR学习算法3.2 Changefinder模块3.3 恒定方差CPD3…

厦门凯酷全科技有限公司正规吗?

在这个短视频风起云涌的时代&#xff0c;抖音作为电商领域的黑马&#xff0c;正以惊人的速度改变着消费者的购物习惯与品牌的市场策略。在这场变革中&#xff0c;厦门凯酷全科技有限公司凭借其专业的抖音电商服务&#xff0c;在众多服务商中脱颖而出&#xff0c;成为众多品牌信…

tensorflow案例6--基于VGG16的猫狗识别(准确率99.8%+),以及tqdm、train_on_batch的简介

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 前言 本次还是学习API和如何搭建神经网络为主&#xff0c;这一次用VGG16去对猫狗分类&#xff0c;效果还是很好的&#xff0c;达到了99.8% 文章目录 1、tqdm…

AI大模型(二):AI编程实践

一、软件安装 1. 安装 Visual Studio Code VSCode官方下载&#xff1a;Visual Studio Code - Code Editing. Redefined 根据自己的电脑系统选择相应的版本下载 安装完成&#xff01; 2. 安装Tongyi Lingma 打开VSCode&#xff0c;点击左侧菜单栏【extensions】&#xff0c;…

Python实现PSO粒子群优化算法优化CNN-Transformer回归模型(优化权重和阈值)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后关注获取。 1.项目背景 本项目旨在利用粒子群优化&#xff08;PSO&#xff09;算法优化卷积神经网络&#xff08;CNN&…

<tauri><websocket>tauri集成web端使用websocket实现数据通讯

前言 本文是在websocket实现通讯的基础上,将前端项目集成到tauri中,以实现桌面窗口程序。 效果展示: 环境配置 系统:windows 平台:visual studio code 语言:javascript、html、rust 库:tauri、nodejs 概述 此前,我的想法是实现网页端与PLC进行socket通讯,利用webs…

Python学习从0到1 day29 Python 高阶技巧 ⑦ 正则表达式

目录 一、正则表达式 二、正则表达式的三个基础方法 1.match 从头匹配 2.search&#xff08;匹配规则&#xff0c;被匹配字符串&#xff09; 3.findall&#xff08;匹配规则&#xff0c;被匹配字符串&#xff09; 三、元字符匹配 单字符匹配&#xff1a; 注&#xff1a; 示例&a…

【鸣潮,原神PC端启动器】仿二次元手游PC端游戏启动器,以鸣潮为例。

二游GAMELauncher启动器 1.前言 许多二次元手游&#xff08;原神&#xff0c;鸣潮&#xff0c;少女前线&#xff09;的PC端启动器都是使用Qt做的&#xff0c;正好最近正在玩鸣潮&#xff0c;心血来潮&#xff0c;便仿鸣潮启动器&#xff0c;从头写一个。先下载一个官方版的PC启…

STM32单片机CAN总线汽车线路通断检测

目录 目录 前言 一、本设计主要实现哪些很“开门”功能&#xff1f; 二、电路设计原理图 1.电路图采用Altium Designer进行设计&#xff1a; 2.实物展示图片 三、程序源代码设计 四、获取资料内容 前言 随着汽车电子技术的不断发展&#xff0c;车辆通信接口在汽车电子控…

H.265流媒体播放器EasyPlayer.js播放器出现加载视频等待画面时长过长的原因排查

在数字媒体时代&#xff0c;用户体验是衡量播放器性能的关键指标之一。EasyPlayer.js网页web无插件播放器作为一款流行的Web视频播放器&#xff0c;其加载速度和响应时间直接影响着用户的观看体验。 1、问题描述 加载视频等待画面时长过长。 2、可能的原因&#xff1a; 检查下…

联想“喜新厌旧”

科技新知 原创作者丨萧维 编辑丨蕨影 十月份&#xff0c;联想很忙。 先是2024联想科技创新大会15日在美国华盛顿州西雅图举行&#xff0c;联想大秀了一下自己在人工智能领域的创新产品、技术和解决方案&#xff0c;英特尔、AMD、英伟达三巨头更同时为其站台&#xff1b;后是与…

fpga 同步fifo

FIFO 基础知识 FIFO&#xff08;First In First Out&#xff0c;即先入先出&#xff09;&#xff0c;是一种数据缓存器&#xff0c;用来实现数据先入先出 的读写方式。在 FPGA 或者 ASIC 中使用到的 FIFO 一般指的是对数据的存储具有先入先出 特性的缓存器&#xff0c;常被用于…

Spark:大数据处理的强大引擎

一、Spark 简介 Apache Spark 是一个专为大规模数据处理而设计的快速、通用、可扩展的大数据分析计算引擎。它诞生于 2009 年&#xff0c;由美国加州伯克利大学的 AMP 实验室开发&#xff0c;2013 年被纳入 Apache 开源项目&#xff0c;并迅速成为顶级项目。 Spark 被认为是 …

常用在汽车PKE无钥匙进入系统的高度集成SOC芯片:CSM2433

CSM2433是一款集成2.4GHz频段发射器、125KHz接收器和8位RISC&#xff08;精简指令集&#xff09;MCU的SOC芯片&#xff0c;用在汽车PKE无钥匙进入系统里。 什么是汽车PKE无钥匙进入系统&#xff1f; 无钥匙进入系统具有无钥匙进入并且启动的功能&#xff0c;英文名称是PKE&…

hive 统计各项目下排名前5的问题种类

实现指定某项目下的数据效果图如下所示&#xff1a; 其中 ABCDE 为前5名的问题种类&#xff0c;其中A问题有124个&#xff08;出现了124次&#xff09; 数据说明&#xff1a; 整个数据集 包含很多项目一个项目 包含很多问题一个问题 选项 可认为是 类别值&#xff0c;所有出…

在 Windows 上搭建 FTP 服务器

&#xff08;1&#xff09;搭建 FTP 服务器 &#xff0c;为 windows 开启 ftp功能 &#xff1a;控制面板 -- 》 程序和功能 -- 》 打开或关闭 windows 功能 &#xff0c;勾选 web 管理工具下所有选项 &#xff0c;如下图所示&#xff1a; &#xff08;2&#xff09;添加 FTP 站…