Linux操作系统小项目——实现《进程池》

文章目录

  • 前言:
  • 代码实现:
  • 原理讲解:
    • 细节处理:

前言:

在前面的学习中,我们简单的了解了下进程之间的通信方式,目前我们只能知道父子进程的通信是通过匿名管道的方式进行通信的,这是因为这点我们就可以简简单单的来写一个项目————进程池

代码实现:

Task.hpp文件

#include <iostream>
#include <string>
#include <vector>
#include <unistd.h>
#include <cstdlib>
#include <sys/types.h>
#include <sys/wait.h>class Channel
{
public:Channel(int wfd, int child_process_id, std::string child_process_name): _wfd(wfd), _child_process_id(child_process_id), _child_process_name(child_process_name){}~Channel(){}int Get_wfd() { return _wfd;}int Get_child_process_id() { return _child_process_id;}std::string Get_child_process_name() { return _child_process_name;}void CloseChannel() { close(_wfd); }void Wait(){pid_t rid = waitpid(_child_process_id, nullptr, 0);if (rid < 0){std::cerr << "Filed to wait" << std::endl;exit(1);}std::cout << "Wait success!" << std::endl;}private:int _wfd;int _child_process_id;std::string _child_process_name;
};void task_print()
{std::cout << "Hey! This is task_print" << std::endl;
}void task_load()
{std::cout << "Yo! This is task_load" << std::endl;
}void task_flush()
{std::cout << "Dude! This is task_flush" << std::endl;
}typedef void (*task_ptr)(void); // function pointertask_ptr task_arr[3]; // function pointer's arrayvoid TaskLoad()
{srand((unsigned int)time(NULL));task_arr[0] = task_print;task_arr[1] = task_load;task_arr[2] = task_flush;std::cout << "Task are all be loaded!" << std::endl;std::cout << "------------------------" << std::endl;
}int ChoseTask()
{int n = rand() % 3;return n;
}int PipeNumber(int times)
{static int _pipe = 0;int next = _pipe;_pipe++;_pipe %= times;return next;
}void WriteToPipe(int p_number, int t_number, std::vector<Channel> Channels)
{static int i = 1;int n = write(Channels[p_number].Get_wfd(), &t_number, sizeof(t_number));if(n < 0) {std::cerr << "failed to write" << std::endl;exit(1);}std::cout << i++ << "->the number of task '" << t_number << "' have writen in pipe ' " << p_number << "' already" << std::endl;
}void work(int rfd)
{while(true){sleep(1);int file_buffer = 0;int n = read(rfd, &file_buffer, sizeof(file_buffer));if(n < 0){std::cerr << "Failed to read" << std::endl;exit(1);}else if(n == 0){std::cout << "child process : " << getpid() << " quit" << std::endl;break;}task_arr[file_buffer]();}
}

processpool.cc文件

#include "Task.hpp"void CreateChannels(int nums, std::vector<Channel> *Channels)
{for (int i = 0; i < nums; ++i){// create pipeint pipefd[2] = {0};int n = pipe(pipefd);if (n < 0){std::cerr << "Failed to create pipe" << std::endl;exit(1);}// create child processint pid = fork();if (pid == 0){// childif (!Channels->empty()){std::cout << "----Before I close my pipefd[1], I have to close the wfd which inherited by the father process's struct files_struct!" << std::endl;for (auto &channel : *Channels)channel.CloseChannel();}std::cout << "Here is child process!" << std::endl;close(pipefd[1]); // as child process close unnecessary wfdwork(pipefd[0]);close(pipefd[0]);exit(0);}// fatherstd::string name = "Channel No.";std::string Number = std::to_string(i);name += i;close(pipefd[0]); // as father process close unnecessary rfdChannels->push_back({pipefd[1], pid, name});}
}void ControlChannels(int times, std::vector<Channel> Channels)
{for (int i = 0; i < times; ++i){sleep(1);// chose pipe number to be writen in pipeint pipe_number = PipeNumber(times);// chose task number to write in pipeint task_number = ChoseTask();// write task number to the pointed pipeWriteToPipe(pipe_number, task_number, Channels);}
}void CleanChannels(std::vector<Channel> Channels)
{for (auto &channel : Channels){channel.CloseChannel();// channel.Wait();}// for (auto &channel : Channels)// {//     channel.Wait();// }
}int main(int argc, char *argv[])
{if (argc == 1){std::cerr << "Need more argc! need more option!" << std::endl;return 1;}int nums = std::stoi(argv[1]);std::vector<Channel> Channels;// load all the functionTaskLoad();// 1、create channels and child processCreateChannels(nums, &Channels);// 2、control channelsControlChannels(nums, Channels);// 3、free channels and wait child process exitCleanChannels(Channels);// sleep(100);return 0;
}

原理讲解:

其实这个进程池项目通过画图就很好能做出来:
image-20241010102548398

细节处理:

  1. 由图片可知,未来可能我们要实现很多个任务的时候完全可以采用进程池的方式来解决,与之前处理任务不同的是,以前我们是要执行一个任务就创建一个子进程,而这个不一样,现在是提前就已经开辟好了一堆子进程。
    所以先提前创建好适量的子进程,有任务就交给子进程执行,这么做更适合多任务的并发操作,因为节省了创建子进程的操作。

  2. 未来master可以将任务发送至管道内部,以此来唤醒子进程来处理任务,但是要注意父进程不可针对的使用同一个管道,应当在多个管道直接轮询写入,这就保证了后端任务划分的负载均衡

  3. 具体的实现将任务发送至管道内部,从代码的角度来看其实就是将函数发送到管道之中,所以我们可以先创建一个函数指针数组来进行管理各个函数,未来在将任务写入至管道也仅仅需要传递下标(数字)即可。

  4. 在回收的时候我们也要额外注意!我们可以先让父进程遍历所有管道并关闭所有管道的wfd(这主要依据管道的5种特征——“若是管道的wfd关闭了,且rfd还没关闭,那么迟早会读到文件末尾,那么read系统调用就会返回0,就会结束读取”),再遍历一遍,等待每一个子进程退出。等待的原因其实是为了能够在子进程执行完后进行回收,从而避免出现“孤儿进程”。

  5. (BUG!!!!!)切记!不可以一边关闭管道的wfd再等待子进程退出,这会造成子进程阻塞!!!
    image-20241010104818857

    image-20241010105101099

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1560419.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【gRPC】4—gRPC与Netty

gRPC与Netty ⭐⭐⭐⭐⭐⭐ Github主页&#x1f449;https://github.com/A-BigTree 笔记链接&#x1f449;https://github.com/A-BigTree/Code_Learning ⭐⭐⭐⭐⭐⭐ 如果可以&#xff0c;麻烦各位看官顺手点个star~&#x1f60a; &#x1f4d6;RPC专栏&#xff1a;https://…

力扣 前缀和

找子数组的个数了解前缀和的基础。 前缀和大致理解为到达某个位置&#xff0c;前面几个数的总和&#xff0c;即s[i1]s[i]a[i1]&#xff0c;可以通过一次循环获得。然后几个前缀和作差&#xff0c;即可得到某个位置到某个位置的和&#xff0c;根据map的键值对进行更新次数。 题…

opencv实战项目(三十一):基于同态滤波的图像亮度提升

文章目录 前言一、同态滤波二、算法实现 前言 在数字图像处理领域&#xff0c;图像亮度的调整是一项基本且至关重要的技术。它不仅关系到图像的视觉效果&#xff0c;而且在许多实际应用中&#xff0c;如医疗影像分析、卫星遥感监测、视频监控系统等&#xff0c;都扮演着关键角…

基于STM32 ARM+FPGA+AD的电能质量分析仪方案设计(一)硬件设计

电能质量分析系统硬件设计 3.1 电能质量分析系统设计要求 本系统实现对电能质量的高精度测量&#xff0c;根据国家相关电能质量分析仪器规定 标准以及对市场电能质量分析仪的分析&#xff0c;指定以下设计目标。 &#xff08; 1 &#xff09;电能质量参数测量精度&#xf…

欧科云链研究院深掘链上数据:洞察未来Web3的隐秘价值

目前链上数据正处于迈向下一个爆发的重要时刻。 随着Web3行业发展&#xff0c;公链数量呈现爆发式的增长&#xff0c;链上积聚的财富效应&#xff0c;特别是由行业热点话题引领的链上交互行为爆发式增长带来了巨量的链上数据&#xff0c;这些数据构筑了一个行为透明但与物理世…

【部署篇】Redis-01介绍‌

一、Redis介绍‌ 1、什么是Redis&#xff1f; ‌Redis&#xff0c;英文全称是Remote Dictionary Server&#xff08;远程字典服务&#xff09;&#xff0c;Redis是一个开源的、使用‌ANSI C语言编写的‌Key-Value存储系统&#xff0c;支持网络、可基于内存亦可持久化。‌ 它提…

leetcode hot100_part3_滑动窗口

滑动窗口是有一个基本的模版的&#xff0c;不要自己想当然哦~ 滑动窗口算法思想&#xff08;附经典例题&#xff09;_滑动窗口的思想-CSDN博客 滑动窗口也叫同向双指针&#xff1b;可以先看一下灵山视频&#xff1a;滑动窗口【基础算法精讲 03】_哔哩哔哩_bilibili 3.无重复字…

【unity进阶知识12】从零手搓unity存档存储数据持久化系统,实现对存档的创建,获取,保存,加载,删除,缓存,加密,支持多存档

文章目录 前言一、Unity对Json数据的操作方法一、JsonUtility方法二、Newtonsoft 二、持久化的数据路径三、数据加密/解密加密方法解密方法 四、条件编译指令限制仅在编辑器模式下进行加密/解密四、数据持久化管理器1、存档工具类2、一个存档数据3、存档系统数据类4、数据存档存…

【Oracle数据库进阶】001.SQL基础查询_查询语句

课 程 推 荐我 的 个 人 主 页&#xff1a;&#x1f449;&#x1f449; 失心疯的个人主页 &#x1f448;&#x1f448;入 门 教 程 推 荐 &#xff1a;&#x1f449;&#x1f449; Python零基础入门教程合集 &#x1f448;&#x1f448;虚 拟 环 境 搭 建 &#xff1a;&#x1…

安卓使用.9图实现阴影效果box-shadow: 0 2px 6px 1px rgba(0,0,0,0.08);

1.安卓实现阴影效果有很多种&#xff0c;一般UX设计会给以H5参数box-shadow: 0 2px 6px 1px rgba(0,0,0,0.08);这种方式提供背景阴影效果&#xff0c;这里记录一下实现过程 2.界面xml源码 <?xml version"1.0" encoding"utf-8"?> <layout xmlns…

【SEO】什么是SEO?

什么是SEO&#xff08;搜索引擎优化&#xff09;&#xff1f;为什么SEO对于⼀个⽹站⾄关重要&#xff1f; SEO 全称是搜索引擎优化&#xff08;Search Engine Optimization&#xff09; 因为我们目前开发的网址&#xff0c;需要人看到&#xff0c;除了通过宣传营销的方式展现…

kubernetes中微服务部署

微服务 问&#xff1a;用控制器来完成集群的工作负载&#xff0c;那么应用如何暴漏出去&#xff1f; 答&#xff1a;需要通过微服务暴漏出去后才能被访问 Service 是一组提供相同服务的Pod对外开放的接口借助Service&#xff0c;应用可以实现服务发现和负载均衡Service 默认只…

Docker容器简介及部署方法

1.1 Docker简介 Docker之父Solomon Hykes&#xff1a;Docker就好比传统的货运集装箱 2008 年LXC(LinuX Contiainer)发布&#xff0c;但是没有行业标准&#xff0c;兼容性非常差 docker2013年首次发布&#xff0c;由Docker, Inc开发 1.1.1什么是Docker Docker是管理容器的引…

苹果秋季盛典:iPhone 16系列引领未来科技潮流

9月10日&#xff0c;苹果公司在众人瞩目中举办了2024年的秋季特别活动&#xff0c;发布了备受期待的iPhone 16系列。 尽管网络发布会已经持续了一整年&#xff0c;但熬夜观看的果粉们仍然热情不减&#xff0c;因为每一次苹果的新品发布都代表着科技界的一次重大飞跃。 iPhone …

scau:面向对象java实验作业1-2 猜数字游戏

题目名称实验1-2 猜数字游戏题目关键字数据类型 基本输入输出 控制语句 方法题目录入时间2022/10/10 11:01:37题目内容 使用Java程序&#xff0c;项目名称&#xff1a;GuessNumberGame&#xff0c;类根据自己需要定义。 程序开始运行后&#xff0c;允许玩家进行多次猜数字的游…

使用 Docker 部署前端项目:Vue 和 React 结合 Nginx 实现静态文件托管

使用 Docker 部署前端项目&#xff1a;Vue 和 React 结合 Nginx 实现静态文件托管 Web 开发中&#xff0c;将前端项目&#xff08;例如 Vue 或 React 应用&#xff09;打包后通过 Docker 容器和 Nginx 部署是非常常见的方式。它不仅简化了部署流程&#xff0c;还能确保在不同环…

通信协议 —— RS485 讲解得好

目 录 RS-485 通信协议一、重要性二、通信实现三、其它通信方式3.1 串口通信3.2 RS232标准 四、总结 RS-485 通信协议 RS-485是一种通用的通信标准&#xff0c; RS是Recommended Standard的意思&#xff0c;是美国电子工业协会&#xff08;EIA&#xff09;在1983年批准了一个新…

【操作系统】深入探索:操作系统内核与用户进程的数据交互艺术

目录 一、数据从内核缓冲区拷贝到用户进程缓冲区&#xff0c;是谁来负责拷贝的&#xff0c;是操作系统还是用户进程&#xff1f;实际的执行者到底是谁&#xff1f;二、系统调用以及用户态内核态的相互转换1、系统调用2、用户态内核态的相互转换 三、如何形象的理解linux的虚拟地…

【华为】基于华为交换机的VLAN配置与不同VLAN间通信实现

划分VLAN&#xff08;虚拟局域网&#xff09;主要作用&#xff1a; 一、提高网络安全性 广播域隔离访问控制增强 二、优化网络性能 减少网络拥塞提高网络可管理性 sysytem-view #进入系统视图配置参数 vlan batch 10 20 #批量创建vlan LSW3: int g0/0/1 port…

RTSP 音视频play同步分析

基础理论 RTSP RTP RTCP SDP基础知识-CSDN博客 关于RTP的时间戳知识点回顾 时间戳单位&#xff1a;时间戳计算的单位不是秒&#xff0c;而是采用采样频率的倒数&#xff0c;这样做的目的是为了使时间戳单位更为精准。比如说一个音频的采样频率为8000Hz&#xff0c;那么我们可…