YOLO11改进|注意力机制篇|引入MSCA注意力机制

在这里插入图片描述

目录

    • 一、【MSCA】注意力机制
      • 1.1【MSCA】注意力介绍
      • 1.2【MSCA】核心代码
    • 二、添加【MSCA】注意力机制
      • 2.1STEP1
      • 2.2STEP2
      • 2.3STEP3
      • 2.4STEP4
    • 三、yaml文件与运行
      • 3.1yaml文件
      • 3.2运行成功截图

一、【MSCA】注意力机制

1.1【MSCA】注意力介绍

在这里插入图片描述

下图是【MSCA】的结构图,让我们简单分析一下运行过程和优势

  • 处理过程:
  • 多尺度卷积(Multi-Scale Convolution):MSCA 模块的核心是多尺度卷积,它使用不同尺寸的卷积核(如 7×1、11×1、21×1 等)来提取特征。这些不同尺寸的卷积核能够捕捉到不同感受野中的信息,从而增强模型对不同大小目标的检测能力。图中的多个卷积核(d.7x1、d.11x1 等)从不同尺度上提取空间特征,获取从局部到全局的多尺度信息。
  • 通道混合(Channel Mixing):在多尺度卷积操作后,所有尺度的特征会通过通道混合操作进行融合。这个步骤通过 1x1 卷积对不同通道的信息进行整合,提升了特征间的相关性。
  • 卷积注意力(Convolutional Attention):MSCA 最后一步是卷积注意力机制,它利用卷积操作捕捉图像中的关键区域,并对不同位置的特征进行加权,以强调重要的特征区域。这个过程可以使模型更关注关键信息,抑制背景噪声。
  • 优势:
  • 多尺度感知能力:通过多种不同尺寸的卷积核,MSCA 可以捕捉到不同尺度的特征,无论是大目标还是小目标,都能够被有效检测到。这种多尺度特征提取能力特别适合处理复杂场景和具有多样性尺寸的目标。
  • 局部与全局信息的有效结合:MSCA 模块不仅能提取局部细节信息,还能够通过较大感受野的卷积捕获全局上下文信息。这种局部和全局信息的结合提高了检测的精度和鲁棒性。
  • 轻量化与高效性:通过 1x1 卷积进行通道混合,可以有效减少参数量和计算量,使得模型在保证高效检测的同时也具备轻量化的特性,适用于资源有限的应用场景。
  • 注意力机制增强:引入卷积注意力机制后,模型能够自适应地调整对不同区域的关注度,从而提高了对关键信息的捕捉能力,减少了背景干扰的影响。
    在这里插入图片描述

1.2【MSCA】核心代码

import torch
import torch.nn as nn
from torch.nn import functional as Fclass MSCA(nn.Module):def __init__(self, dim):super().__init__()# 使用5x5核的卷积层,应用深度卷积self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)# 两组卷积层,分别使用1x7和7x1核,用于跨度不同的特征提取,均应用深度卷积self.conv0_1 = nn.Conv2d(dim, dim, (1, 7), padding=(0, 3), groups=dim)self.conv0_2 = nn.Conv2d(dim, dim, (7, 1), padding=(3, 0), groups=dim)# 另外两组卷积层,使用更大的核进行特征提取,分别为1x11和11x1,也是深度卷积self.conv1_1 = nn.Conv2d(dim, dim, (1, 11), padding=(0, 5), groups=dim)self.conv1_2 = nn.Conv2d(dim, dim, (11, 1), padding=(5, 0), groups=dim)# 使用最大尺寸的核进行特征提取,为1x21和21x1,深度卷积self.conv2_1 = nn.Conv2d(dim, dim, (1, 21), padding=(0, 10), groups=dim)self.conv2_2 = nn.Conv2d(dim, dim, (21, 1), padding=(10, 0), groups=dim)# 最后一个1x1卷积层,用于整合上述所有特征提取的结果self.conv3 = nn.Conv2d(dim, dim, 1)def forward(self, x):u = x.clone() # 克隆输入x,以便之后与注意力加权的特征进行相乘attn = self.conv0(x) # 应用初始的5x5卷积# 应用1x7和7x1卷积,进一步提取特征attn_0 = self.conv0_1(attn)attn_0 = self.conv0_2(attn_0)# 应用1x11和11x1卷积,进一步提取特征attn_1 = self.conv1_1(attn)attn_1 = self.conv1_2(attn_1)# 应用1x21和21x1卷积,进一步提取特征attn_2 = self.conv2_1(attn)attn_2 = self.conv2_2(attn_2)attn = attn + attn_0 + attn_1 + attn_2 # 将所有特征提取的结果相加attn = self.conv3(attn) # 应用最后的1x1卷积层整合特征return attn * u # 将原始输入和注意力加权的特征相乘,返回最终结果if __name__ == "__main__":# 创建 AttentionModule 实例,这里以64个通道为例attention_module = MSCA(dim=64)# 创建一个假的输入数据,维度为 [batch_size, channels, height, width]# 例如,1个样本,64个通道,64x64的图像input_tensor = torch.rand(1, 64, 64, 64)# 通过AttentionModule处理输入output_tensor = attention_module(input_tensor)# 打印输出张量的形状print(output_tensor.shape)

二、添加【MSCA】注意力机制

2.1STEP1

首先找到ultralytics/nn文件路径下新建一个Add-module的python文件包【这里注意一定是python文件包,新建后会自动生成_init_.py】,如果已经跟着我的教程建立过一次了可以省略此步骤,随后新建一个MSCA.py文件并将上文中提到的注意力机制的代码全部粘贴到此文件中,如下图所示在这里插入图片描述

2.2STEP2

在STEP1中新建的_init_.py文件中导入增加改进模块的代码包如下图所示在这里插入图片描述

2.3STEP3

找到ultralytics/nn文件夹中的task.py文件,在其中按照下图添加在这里插入图片描述

2.4STEP4

定位到ultralytics/nn文件夹中的task.py文件中的def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)函数添加如图代码,【如果不好定位可以直接ctrl+f搜索定位】

在这里插入图片描述

三、yaml文件与运行

3.1yaml文件

以下是添加【MSCA】注意力机制在Backbone中的yaml文件,大家可以注释自行调节,效果以自己的数据集结果为准

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 1, MSCA,[]]- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 11], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

以上添加位置仅供参考,具体添加位置以及模块效果以自己的数据集结果为准

3.2运行成功截图

在这里插入图片描述

OK 以上就是添加【MSCA】注意力机制的全部过程了,后续将持续更新尽情期待

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1557751.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

easyconnect配置wireshark抓包

文章目录 概述过程配置Wireshark抓包 概述 过程 配置Wireshark抓包 首先需要配置虚拟网卡SangforVPN可被Wireshark识别 重启 sc stop npcap sc start npcap# 清空路由表 netsh int ipv4 reset # 查看路由表 route print

企业建站能带来些什么?2024外包建站公司哪家好

目的的话只有企业自己知道,但作用还是有很多的—— 1.塑造企业精神与文化-对内 企业内部不管是否真的存在企业精神和企业文化,在制作网站的过程中都会考虑到这方面的内容,因为这是企业网站内容中不可或缺的一部分。 在企业内部还不存在所谓…

Java中的冒泡排序法

冒泡排序 排序的介绍冒泡排序法代码实现 排序的介绍 冒泡排序法 代码实现 将五个无序:24,69,80,57,13使用冒泡排序法将其排成一个从小到大的有序数列 public class test{public static void main(String[] args){int a…

tensorflow快速入门--如何定义张量、定义网络结构、超参数设置、模型训练???

前言 由于最近学习的东西涉及到tensorflow的使用,故先简单的学习了一下tensorflow中如何定义张量、定义网络结构、超参数设置、模型训练的API调用过程;欢迎大家,收藏关注,本人将持续更新。 文章目录 1、基本操作1、张量基础操作创…

时间序列+Transformer席卷而来,性能秒杀传统,创新性拉满,引爆顶会!

时间序列分析与Transformer模型的结合,已成为深度学习领域的一大趋势。这种结合能够高效捕捉序列中的长期依赖关系,提升时间序列分析和预测的准确性。 时间序列Transformer技术在股票价格预测、气候预测、交通流量预测、设备故障预测、自然语言处理等多…

封装vue-cropper,图片裁剪组件

组件基本使用: 这里的action同时也可以传相对路径&#xff0c;比如封装了axios&#xff0c;那么组件源码里就不能引入元素axios&#xff0c;可以替换为封装的axios。传 action"/file/upload" 源代码&#xff1a; <script setup> import WuyuCropper from /com…

【基础算法总结】字符串篇

目录 一&#xff0c;算法简介二&#xff0c;算法原理和代码实现14.最长公共前缀5.最长回文子串67.二进制求和43.字符串相乘 三&#xff0c;算法总结 一&#xff0c;算法简介 字符串 string 是一种数据结构&#xff0c;它一般和其他的算法结合在一起操作&#xff0c;比如和模拟&…

远程控制软件推荐:亲测好用!

无论是在家办公、技术支持还是远程协助家人&#xff0c;一个好的远程控制工具都能让我们的工作更加高效。下面&#xff0c;我将分享我对几款流行的远程控制软件的个人体验&#xff0c;并给出我的推荐。 向日葵远程控制 直达链接&#xff1a;down.oray.com 向日葵远程控制是…

如何实现一个基于 HTML+CSS+JS 的任务进度条

如何实现一个基于 HTMLCSSJS 的任务进度条 在网页开发中&#xff0c;任务进度条是一种常见的 UI 组件&#xff0c;它可以直观地展示任务的完成情况。本文将向你展示如何使用 HTML CSS JavaScript 来创建一个简单的、交互式的任务进度条。用户可以通过点击进度条的任意位置来…

Spring Boot读取resources目录下文件(打成jar可用),并放入Guava缓存

1、文件所在位置&#xff1a; 2、需要Guava依赖&#xff1a; <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>23.0</version></dependency>3、启动时就读取放入缓存的代码&#xf…

10.8作业

优化登录框&#xff1a; 当用户点击取消按钮&#xff0c;弹出问题对话框&#xff0c;询问是否要确定退出登录&#xff0c;并提供两个按钮&#xff0c;yes|No&#xff0c;如果用户点击的Yes&#xff0c;则关闭对话框&#xff0c;如果用户点击的No&#xff0c;则继续登录 当用户点…

26.删除有序数组中的重复项

题目::26. 删除有序数组中的重复项 - 力扣&#xff08;LeetCode&#xff09; 思路:只要不和前面的数一样就可以移动指针&#xff0c;进行赋值 代码: class Solution { public:int removeDuplicates(vector<int>& nums) {int slow 0 ;for(int fast 1; fast < …

Sharding-JDBC笔记04-分库分表实战

文章目录 前言一、需求描述二、数据库设计三、环境说明四、环境准备4.1.mysql主从同步(windows)4.2.初始化数据库 五、实现步骤5.1 搭建maven工程引入maven依赖 5.2 实体类5.3 dao层5.4 服务类5.5 测试类总结 5.6 查询商品DaoService单元测试输出小结 5.7 统计商品Dao单元测试统…

许昌文旅助手:AI智能体在文旅领域的创新应用

哈哈&#xff0c;大家好&#xff0c;我是王帅旭&#xff0c;来自大禹智库&#xff0c;也是《实战AI智能体》一书的作者。今天&#xff0c;咱们就来聊聊一个超级有趣的案例——许昌文旅助手&#xff0c;看看AI智能体是如何在文旅领域大放异彩的&#xff01; 无限拓展的能力集&am…

10.8QTQMessageBox练习

QQ界面 widget.cpp #include "widget.h"Widget::Widget(QWidget *parent): QWidget(parent) {//设置框体的大小和颜色this->setFixedSize(350,500);this->setStyleSheet("background-color:#e5f0ff;");//创建一个LineEdit edit1edit1 new QLineEdi…

面试淘天集团大模型算法工程师, 开心到飞起!!!

应聘岗位&#xff1a;淘天集团-大模型算法工程师 面试轮数&#xff1a; 整体面试感觉&#xff1a; 1. 自我介绍 在自我介绍环节&#xff0c;我清晰地阐述了个人基本信息、教育背景、工作经历和技能特长&#xff0c;展示了自信和沟通能力。 2. 技术问题 2.1 在大模型微调过程…

全网最详细的Python Locust性能测试框架实践

Locust的介绍 Locust是一个python的性能测试工具&#xff0c;你可以通过写python脚本的方式来对web接口进行负载测试。 Locust的安装 首先你要安装python2.6以上版本&#xff0c;而且有pip工具。之后打开命令行&#xff0c;分别安装locustio和pyzmq&#xff08;命令如下&…

【技术白皮书】内功心法 | 第一部分 | 数据结构与算法基础(数据结构)

数据结构与算法基础 内容简介数据结构数据模型数据结构的表现形式 基本概念数据&#xff08;Data&#xff09;数据元素&#xff08;data element&#xff09;数据结构的定义物理结构和逻辑结构逻辑结构逻辑结构表现形式二元组模型集合结构模型线性结构模型树结构模型图结构模型…

GNURadio 平台实现AM信号调制解调实验

文章目录​​ 一、AM调制解调原理 1.调制原理 2.解调原理 二、搭建的GRC流图 1.AM调制信号流图 2.AM解调信号流图 一、AM调制解调原理 1.调制原理 幅度调制&#xff08; Amplitude modulation——AM&#xff09; &#xff0c; 是常规的双边带调制&#xff0c; 即使载波的…

和鲸科技创始人范向伟:拐点即将来临,AI产业当前的三个瓶颈

在科技迅猛发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;无疑已经成为引领新一轮产业革命的核心动力之一。全球企业纷纷拥抱AI技术&#xff0c;试图借助其变革力量在竞争中突围&#xff0c;然而业界对AI产业化的拐点何时来临却众说纷纭。毕竟AI技术从实验室到商业…