LLM大模型企业应用实战-“消灭”LLM幻觉的利器

大模型一定程度改变了我们生活工作的思考方式,越来越多的个人和企业在思考如何将大模型应用到更加实际的生产生活。

1 LLM的问题

1.1 幻觉

LLM因为是一个预训练模型,它已有一些知识储备,我们提的问题跟他的知识储备不相符时,会产生一些幻觉问题,看上去正确的回答。

1.2 新鲜度

LLM预训练出来之后,不能感知到我们实时更新的工业数据,还有企业内部的一些私域数据。

1.3 数据安全

LLM训练依赖很多训练数据集,然后为了保证大语言模型的效果更好,训练集的质量及数据量越多,对LLM的训练最终效果更好,但又期望LLM帮解决一些垂类问题,又希望在数据安全有些防范,如企业内部敏感数据不能暴露出去,让公有的LLM去进行训练。

2 RAG是啥?

为解决LLM刚提到问题,提出RAG,将企业内部私域数据及实时更新的一些公域数据,通过一些处理后,变成可进行相似性搜索的向量数据,然后存储到向量数据库。

和LLM交互时,用户提问。先在我们的相同数据库中进行相似性检索,检索与提问相关的知识内容,检索后交给LLM,连同用户的提问一起让 LLM 去生成回复。

RAG帮助我们个人及用户去把企业内部的一些知识数据,很快构建出一个庞大知识库,然后结合目前已有LLM能力,可快速制作智能问答机器人应用。

小结

为LLM提供来自外部知识源的额外信息的概念。这允许它们生成更准确和有上下文的答案,同时减少幻觉

  • 检索:外部相似搜索
  • 增强:提示词更新
  • 生成:更详细的提示词输入LLM

2 RAG应用咋构建?

使用到RAG的这条链路之后,用户先去构建好的知识库,即向量数据库里进行相似性检索,再带出一部分的知识知识文档。这部分知识文档会跟用户的query结合。

然后通过prompt技术组装成一个最终完成的一个输入给到LLM,让LLM回复。

最关键就是知识库生成这步,因为主要涉及把我们的知识文档去做内容提取及拆分。还要进行量化,入库。

2.1 RAG步骤
  1. 知识切片成Chunk
  2. 向量化Chunk入库

前两步都是去知识库生成。

  1. Query检索知识Chunk
  2. 构建Prompts
  3. 调用LLM生成回答

后三步都是知识库生成后,在检索方面需要做的。

2.2 基于Langchain构建 RAG 应用

Langchain中RAG的实现:

各种文档 - 各种 loader - 文本切片 - 嵌入向量化 - 向量存储 - 各种检索链。

设计思想

把那五步拆成不同组件,然后由不同节点做相应处理。让用户去编写自己的业务逻辑的代码,然后把这整个过程串起。

优势
  • 可快速构建一个demo,帮助开发者去理解RAG应用
  • 庞大社区支持,如一些插件或它的一个版本更新迭代都很快
痛点

本质上通用性很强。为保证强通用性,效果层面不一定做到最好,需企业或个人投入较大精力,把整体的RAG在召回层的效果提升到最佳。

3 bad case

构建整个RAG应用过程中会遇到的一些问题和解决方案。

3.1 拒答

用户提问:请问A产品分析报告多久分析一次?

召回的相关知识:A产品的分析报告信息近30天的数据分析结果。

原因是我们用户的问题,在相关知识中没明确提到,只是有一定相似度。但跟我们用户问题不直接相关。这样的相关知识以及用户的问题。组装后交给LLM回答,本质上是人为制造干扰。

对此,有个工程化实践叫拒答。

3.2 消歧

提问:A课程适合多大年龄小孩。

知识库召回两条数据,其中一条是期望的一个知识,就在A课程文档。会有一段话跟提问相关,但还会召回其他的一个干扰知识。如其他文档里一些内容,像该课程适合3到7岁的小孩,适合6到8岁的女孩。这种知识内容也会被召回。

期望的召回内容携带一部分干扰信息,这干扰信息没有A课程这个关键字,然后也不会召回。在这两个知识内容交给大源模型处理,他也无法理解哪个字内容正确。

更希望在召回层,就有较好手段处理。工程化实践里,会对用户进行改写,增强query的一个效果。

也用到类似BM25这种倒排索引,提升关键字的权重。如干扰知识里没生成这个关键字,其相似度分数较低,就不会召回。

3.3 分类

可能有用户的提问类似:服务器连接不上,应当如何解决?

现在给知识库里面注入的文档,都是类似连接服务器应该有哪些步骤。

将这些知识内容召回,交给LLM也能引导用户。但不能直切要害,用户更希望,我现在连接不上,有啥排查手段。更好的还是通过提供一些专门QA文档,增强整个知识召回内容准确性。

用户可能问一些跟他实例相关的问题。如CPU占用变高或内存变高,实际响应可能是技术支持文档里的一些处理方案,就是我现在内存变更咋处理。但用户想知道为啥变高。有一个意图识别模型,判断用户他想要的问题具体是一个什么类的,需不需要用到RAG,也会判断他是否需要用到诊断引擎。类似问题2,需要用到诊断引擎,那我们会调用其他RAG无关的诊断相关技术为用户排查问题,并且给用户反馈一个结果。

4 咋提升RAG应用效果?

$$

整体效果 = 文档处理效果 Embedding效果 Retrieval效果 * LLM效果

$$

demo易,但上手难,主要因为LangChain、LLamIndex框架盛行。很快接入就是初级的一个状态,可能只做到35%。

想提高整体一个准确率,在拆分那儿会拆更合理、提取内容时,把整个内容提取更好。做向量化时,去选择我们的向量,更好的一个embedding模型。

最终跟LLM交流时,选择效果更好的LLM,然后把这效果给提升到更高。

但60%的准确率还是达不到生产期望。希望准确率90%,在RAG应用构建各阶段,都有很多工程化手段。

目前RAG整体应用在界内的比较关注的一个地方就是在召回。因为涉及知识文档,思考方向:

  • 优先保护保证这个召回率
  • 优先保证这个精度

RAG召回是希望获得更多和用户提问相关的知识内容,还是说我只需要更关键的知识内容排在最顶。某云厂商相关数据库AI套件选择前路,期望召回更多跟用户相关的提问的内容。

精度尽量保证召回内容在top3、top5位置出现,因为召回的一些内容确实有一部分干扰信息。但目前LLM能力尚可,对这种干扰性信息的排除能力较好。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1556633.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

小目标检测利器:YOLOv8+SAHI使用教程

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…

MySQL连接查询:自连接

先看我的表结构 emp表 自连接也就是把一个表看作是两个作用的表就好,也就是说我把emp看作员工表,也看做领导表 自连接 基本语法 select 字段列表 FROM 表A 别名A JOIN 表A 别名B ON 条件;例子1:查询员工 及其 所属领导的名字 select a.n…

《从零开始大模型开发与微调》真的把大模型说透了!零基础入门一定要看!

2022年底,ChatGPT震撼上线,大语言模型技术迅速“席卷”了整个社会,人工智能技术因此迎来了一次重要进展。与大语言模型相关的研发岗薪资更是水涨船高,基本都是5w月薪起。很多程序员也想跟上ChatGPT脚步,今天给大家带来…

【C++指南】类和对象(二):类的默认成员函数——全面剖析 :构造函数

💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《C指南》 期待您的关注 ​ 阅读本篇文章之前,你需要具备的前置知识:类和对象的基础 点击下方链接 【C指南…

顶会论文复现:PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

文章目录 1 资料2 我的总结3 复现源码首先你需要有gpt的api接口安装:数据集执行指令源码 4 结果 1 资料 我复现的源码:https://github.com/Whiffe/test_set_contamination 官网源码:https://github.com/tatsu-lab/test_set_contamination 论文&#x…

Java实体对象转换利器MapStruct详解

概述 现在的JAVA项目多数采用分层结构,参考《阿里巴巴JAVA开发手册》。 分层之后,每一层都有自己的领域模型,即不同类型的 Bean:  DO ( Data Object ) :与数据库表结构一一对应,…

游戏盾是如何解决游戏行业攻击问题

随着游戏行业的迅猛发展,其高额的利润和激烈的市场竞争吸引了众多企业和创业者的目光。然而,这一行业也面临着前所未有的业务和安全挑战,尤其是DDoS(分布式拒绝服务)攻击,已经成为游戏行业的一大威胁。今天…

C语言基础(10)之指针(2)

在上一篇文章中我们谈到了指针,并给老铁们讲解了什么是指针、指针类型、野指针以及指针运算等知识。在这篇文章中小编将继续带大家了解指针的相关知识点。 1. 指针和数组 指针和数组之间又能有什么联系呢?在谈这个之前,我们先来讲讲指针和数…

Android15车载音频之Virtualbox中QACT实时调试(八十八)

简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【原创干货持续更新中……】🚀 优质视频课程:AAOS车载系统+…

微信小程序开发-调试及配置文件介绍

一,隐藏控制台系统日志 在小程序开发中,如果你想要隐藏控制台中的系统日志,可以通过以下步骤进行操作: 打开小程序的开发工具。在开发工具的控制台(Console)中,找到你想要隐藏的系统日志。右键点击该系统日志条目。在…

MySQL连接查询:外连接

先看我的表结构 dept表 emp表 外连接分为 1.左外连接 2.右外连接 1.左外连接 基本语法 select 字段列表 FORM 表1 LEFT [OUTER] JOIN 表2 ON 条件;例子:查询emp表的所有数据,和对应部门的员工信息(左外连接) select e.*, d.n…

利士策分享,旅游是否要舟车劳顿才能尽兴?

利士策分享,旅游是否要舟车劳顿才能尽兴? 国庆假期,当夜幕降临,城市灯火阑珊,一场关于美食与等待的较量悄然上演。 李女士在北京天坛公园附近餐厅的等位经历——前方1053桌的壮观景象,不仅让人咋舌&#xf…

信息学奥赛复赛复习14-CSP-J2021-03网络连接-字符串处理、数据类型溢出、数据结构Map、find函数、substr函数

PDF文档回复:20241007 1 P7911 [CSP-J 2021] 网络连接 [题目描述] TCP/IP 协议是网络通信领域的一项重要协议。今天你的任务,就是尝试利用这个协议,还原一个简化后的网络连接场景。 在本问题中,计算机分为两大类:服务机&#x…

3. BBP系列运动控制板(飞控板)简介

3.1. 概述 Bread Board Pilot(简称BBP) 是在积累了前期 Single Pilot 及 PH7 飞控板大量设计及使用经验的基础上,全新基于PH47代码框架开发的高灵活性, 高性能, 超低成本的最新一代飞控板设计。 目前,因为其使用便捷灵活&#xf…

Hallo部署指南

一、介绍 Hallo是由复旦大学、百度公司、苏黎世联邦理工学院和南京大学的研究人员共同提出的一个AI对口型肖像图像动画技术,可基于语音音频输入来驱动生成逼真且动态的肖像图像视频。 该框架采用了基于扩散的生成模型和分层音频驱动视觉合成模块,提高了…

【AI知识点】正则化(Regularization)

正则化(Regularization) 是机器学习和统计学中的一种技术,用于防止模型过拟合。在训练模型时,模型可能会过度拟合训练数据,导致在新数据上的表现较差。正则化通过在优化过程中引入额外的约束或惩罚项,使模型…

【开发心得】筑梦上海:项目风云录(6)

目录 会海跳槽 票务开启 漂泊在外的日子 未完待续 会海跳槽 随着时刻表的出炉,意味着大规模的界面开发逐步进入正规。项目组里陆陆续续引进了8个人,最多的时候,同时有10个人在现场。“松工”为我们准备的办公室坐的满满当当,…

Maven 高级之分模块设计与继承、聚合

在软件开发中,随着项目规模的扩大,代码量和复杂度不断增加,传统的一体化开发模式逐渐暴露出诸多问题。为了解决这些问题,模块化开发应运而生,而 Maven 正是模块化开发的利器,它提供的继承和聚合机制为构建和…

wc命令:统计文本行数、单词数、字节数

一、命令简介 ​wc​(word count)是一个在类 Unix 系统中常用的命令行工具,用于统计文本文件的 行数​、单词数 ​和 字节数​。 ​​ ‍ 二、命令参数 ​wc​ 命令的基本语法如下: wc [选项] 文件选项: ​-c​…

当管理遇上AI,工作效率翻了3倍!

最近这段时间,很多企业都开始降薪、裁员。 在降本增效的大背景下,企业但凡有什么大动作,压力往往都会转嫁到管理者的身上。 一方面,要调大家的状态,处理团队中的各种琐事;另一方面,要及时响应…