RAG再总结之如何使大模型更好使用外部数据:四个不同层级及查询-文档对齐策略

我们来看看RAG进展。《Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely》(https://arxiv.org/abs/2409.14924),主要讨论了如何使大型语言模型(LLMs)更明智地使用外部数据,以提高其在现实世界任务中的性能。

从内容上看,提出了一种RAG任务分类方法,根据所需的外部数据类型和任务的主要焦点,将用户查询分为四个层次:显式事实查询、隐式事实查询、可解释理由查询和隐藏理由查询。

本文来详细的看看其中的两个问题,一个是关于问题的定义和RAG中查询的四个层次,另一个是关于RAG中的查询-文档对齐的几种策略。

会有一定收获,供大家一起思考并参考。‍‍‍‍‍‍

一、RAG检索增强问答的四个层次

先看问题的定义,将数据增强的LLM应用定义为一个函数,它根据给定的数据建立从用户输入(Query)到预期响应(Answer)的映射。

在数据增强的LLM应用领域中,可以根据它们的复杂性和所需的数据交互深度将查询进行层次化。

查询可以根据与外部数据交互的复杂性和深度,将查询分为四个层次:

对于每个级别的RAG,也可以总结出对应的挑战和实现方案

1、Level-1 显式事实(Explicit Facts)

这些查询直接询问给定数据中直接存在的显式事实,不需要任何额外的推理。这是最简单的查询形式,模型的任务主要是定位和提取相关信息。

例如,“2024年夏季奥运会将在哪里举行?”这个问题针对的是外部数据中包含的一个事实。

1)挑战

  1. 数据检索难度:从大型非结构化数据集中检索相关数据段可能计算密集且容易出错。

  2. 评估难度:在组件级别准确评估RAG系统的性能是一个复杂任务,需要开发能够准确评估数据检索和响应生成质量的稳健指标。

2)解决方案

  • 数据检索增强:使用更先进的信息检索(IR)技术,如基于BERT的编码器,以及结合稀疏和密集检索方法,提高检索的相关性和准确性。

  • 评估机制:开发更精细的评估标准,可能包括基于困惑度或困惑度增益等特定指标。

2、Level-2 隐式事实(Implicit Facts):

这些查询询问数据中的隐式事实,这些事实并不立即明显,可能需要一些常识推理或基本逻辑推断。所需信息可能分散在多个段落中,或需要简单的推理。

例如,“堪培拉所在的国家的执政党是什么?”这个问题可以通过结合堪培拉位于澳大利亚的事实和澳大利亚当前执政党的信息来回答。

1)挑战

  1. 自适应检索量:不同问题可能需要不同数量的检索上下文,固定数量的检索可能导致信息噪声过多或信息不足。

  2. 推理与检索的协调:推理可以指导需要检索的内容,而检索到的信息可以迭代地细化推理策略。

2)解决方案

  • 迭代RAG:使用多步骤RAG过程,动态控制信息收集或纠正的步骤,直到达到正确答案。

  • 图/树问题回答:使用图或树结构来自然表达文本之间的关系,适合需要从多个参考资料中综合信息的查询。

3、Level-3 可解释理由(Interpretable Rationales)

这些查询不仅要求掌握事实内容,还要求能够理解和应用数据上下文中固有的领域特定理由。这些理由通常在外部资源中明确提供,并且在通用大型语言模型的预训练阶段很少遇到或很少出现。

例如,在制药领域,LLM必须解释FDA指南文件——代表FDA当前的想法——以评估特定药物申请是否符合监管要求。同样,在客户支持场景中,LLM必须导航预定义的工作流程的复杂性,以有效地处理用户询问。在医疗领域,许多诊断手册提供了权威和标准化的诊断标准,如急性胸痛患者的管理指南。

通过有效遵循这些外部理由,可以开发出用于管理胸痛的专门LLM专家系统。这涉及到理解程序步骤和决策树,指导支持代理与客户的互动,确保响应不仅准确,而且符合公司的服务标准和协议。

1)挑战

  1. 提示优化成本:优化提示过程耗时且计算量大,不同查询需要不同的背景知识和决策标准。

  2. 有限的可解释性:提示对LLMs的影响是不透明的,难以一致地理解和验证LLM对不同提示的响应的可解释性。

2)解决方案

  • 提示调整:使用强化学习等技术来发现最优的提示配置,以提高LLM遵循外部指令的准确性。

  • 基于CoT的提示:设计链式思考(Chain-of-Thought)或思维树(Tree-of-Thoughts)提示,以促进LLM进行更复杂的推理过程。

4、Level-4 隐藏理由(Hidden Rationales):

这类查询深入到更具挑战性的领域,其中理由没有明确记录,但必须从外部数据中观察到的模式和结果中推断出来。这里所说的隐藏理由不仅指的是隐含的推理链和逻辑关系,还包括识别和提取每个特定查询所需的外部理由的固有挑战和非平凡任务。

例如,在IT运营场景中,云运营团队可能过去处理了许多事件,每个事件都有其独特的情况和解决方案。LLM必须擅长挖掘这个丰富的隐性知识库,以辨别隐含的策略和成功决策过程。

同样,在软件开发中,以前的错误调试历史可以提供隐性洞察的丰富财富。虽然每个调试决策的逐步理由可能没有系统地记录,但LLM必须能够提取指导这些决策的潜在原则。通过综合这些隐藏的理由,LLM可以生成不仅准确而且反映了经验丰富的专业人士随着时间磨练的不言而喻的专业知识和问题解决方法的响应。

1)挑战

  1. 逻辑检索:对于涉及隐藏理由的查询,外部数据的帮助不仅仅依赖于实体级别或语义相似性,而是基于逻辑一致性或主题对齐。

  2. 数据不足:外部数据可能没有明确包含与当前查询相关的指导或答案,相关信息通常嵌入在分散的知识中或通过示例说明。

2)解决方案

  • 离线学习:通过离线方式从数据集中识别和提取规则和指导,然后在需要时检索相关内容。

  • 上下文学习(ICL):使用示例进行上下文学习,利用预训练的大型语言模型的少样本学习能力,通过检索相似的示例来增强模型的推理能力。

前两个层次,显式事实和隐式事实,侧重于检索事实信息,无论是直接说明的还是需要基本推理的。这些层次挑战了LLM提取和综合数据成连贯事实的能力。相反,后两个层次,可解释理由和隐藏理由,将重点转向LLM学习和应用数据背后理由的能力。

二、关于RAG中的查询-文档对齐的几种策略

查询文档对齐的目标是将查询与外部数据中的文档片段对齐,以识别可以帮助回答查询的最佳文档片段。

如图3所示,主要有三种对齐方法:传统对齐、文档域对齐和查询域对齐。

1、传统对齐

涉及将文档片段和查询映射到相同的编码空间。例如,许多基于双编码器的密集检索架构都具有专门的查询编码器。相反,如果像RAG这样的系统采用稀疏检索,则需要从查询中提取关键词进行搜索。

通过查询改写技术可以进一步细化,这可以通过减轻用户术语不准确或描述模糊的问题来提高搜索准确性,从而有效提高搜索结果的精确度。

2、文档域对齐

涉及首先生成合成答案,然后使用这些答案来回忆相关数据,有效解决了查询和检索数据不在相同分布空间的问题。

在这个领域的著名工作是HyDE。

3、查询域对齐

涉及为每个文本的原子单元生成一组合成问题,将文本片段映射到查询空间,然后检索与原始查询最接近的合成问题及其对应的文本片段。这种方法确保了为回答查询选择最相关和上下文适当的片段。

SlimPLM使用一个小的代理模型来生成启发式答案,然后用来预测回答问题所需的知识。这种方法也提供了一种有效的将查询对齐到文档空间的方法。

总结

本文主要介绍了RAG中查询的四个层次以及关于RAG中的查询-文档对齐的几种策略,这些都是很常用策略。

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1555745.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Redis中BitMap实现签到与统计连续签到功能

服务层代码 //签到Overridepublic Result sign() {//1.获取当前登录的用户Long userId UserHolder.getUser().getId();//获取日期LocalDateTime now LocalDateTime.now();//拼接keyString keySuffix now.format(DateTimeFormatter.ofPattern(":yyyyMM"));String …

实例分割、语义分割和 SAM(Segment Anything Model)

实例分割、语义分割和 SAM(Segment Anything Model) 都是图像处理中的重要技术,它们的目标是通过分割图像中的不同对象或区域来帮助识别和分析图像,但它们的工作方式和适用场景各有不同。 1. 语义分割(Semantic Segme…

一款基于 Java 的可视化 HTTP API 接口快速开发框架,干掉 CRUD,效率爆炸(带私活源码)

平常我们经常需要编写 API,但其实常常只是一些简单的增删改查,写这些代码非常枯燥无趣。 今天给大家带来的是一款基于 Java 的可视化 HTTP API 接口快速开发框架,通过 UI 界面编写接口,无需定义 Controller、Service、Dao 等 Jav…

Bolt.new:终极自动化编程工具

兄弟们,终极写代码工具来了—— Bolt.new!全方位的编程支持: StackBlitz 推出了 Bolt․new,这是一款结合了 AI 与 WebContainers 技术的强大开发平台,允许用户快速搭建并开发各种类型的全栈应用。 它的主要特点是无需…

内网靶场 | 渗透攻击红队内网域渗透靶场-1(Metasploit)零基础入门到精通,收藏这一篇就够了

“ 和昨天的文章同一套靶场,这次主要使用的是Kali Linux以及Metasploit来打靶场,熟悉一下MSF在内网渗透中的使用,仅供学习参考,大佬勿喷。本期文章靶场来自公众号:渗透攻击红队。” 靶场下载地址:https://…

展锐平台WIFI国家码信道总结

展锐平台WIFI国家码信道总结 1.下载wireless-regdb wireless-regdb是一个开源的工程,编译它会生成regulatory.bin文件,这实际上是一个加密后的数据库,它记录各个国家可用的无线频段。 可从下面的网站上下载最新的regdb库: https://git.kernel.org/pub/scm/linux/kernel…

【无人水面艇路径跟随控制2】(C++)USV代码阅读: SetOfLos 类的从路径点和里程计信息中计算期望航向

【无人水面艇路径跟随控制2】(C)USV代码阅读: SetOfLos 类的从路径点和里程计信息中计算期望航向 写在最前面set_of_los.cpp小结详细解释头文件包含命名空间构造函数和析构函数设置参数函数获取航向函数 🌈你好呀!我是…

热门:AI变现,看看谁在默默赚大钱?

在这个愈发依赖AI的时代,找到属于自己的盈利方式愈发重要。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 总的来说,利用AI进行盈利的方式主要有三种:技术型、流量型和内容型。 每种方式都根植于AI的特性,但同时也需要特定…

重庆数字孪生工业互联网可视化技术,赋能新型工业化智能制造工厂

重庆作为西南地区的重要工业基地,正积极探索和实践数字孪生、工业互联网及可视化技术在智能制造领域的深度融合,致力于打造新型工业化智能制造工厂,为制造业的高质量发展注入强劲动力。 在重庆的智能制造工厂中,数字孪生技术被广…

Pytorch基础:网络层

文章目录 1.卷积层-Convolution Layers1.1 1d/2d/3d卷积1.2卷积--nn.Conv2d1.3转置卷积(实现上采样) 2.池化层3.线性层—Linear Layer4.激活函数层—Activate Layer 1.卷积层-Convolution Layers 卷积运算:卷积运算在输入信号(图像)上滑动,相应位置上进行乘加. 卷积核:又称过滤…

感知机及其实践

说明 感知机是SVM(support vector machine,支持向量机)的基础,更是机器学习的基础。本文的目的在于把感知机的相关概念捋清楚,并基于感知机做最基本的线性可分的二分类实践。 有关机器学习的一些基础概念,读者可以参考本专栏的第一篇博文[4]&…

AI大模型有哪些,收藏起来防踩坑

大模型是指具有数千万甚至数亿参数的深度学习模型,通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。以下是对大模型的详细数据与分析&#xff1…

【AI副业项目】揭密AI技术对于儿童古诗文项目的应用

大家都知道,古诗文作为中华文化的瑰宝,承载着丰富的历史情感和智慧。但是,在现代社会快节奏的生活中,如何让更多人尤其是少年儿童感受到古诗文的魅力,成为了一个极需解决的问题。 AI技术的兴起为这一难题提供了新的解…

Vue基础指令用法

vue2&#xff0c;官网&#xff1a;介绍 — Vue.js (vuejs.org) 例子&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-s…

免费送源码:Java+B/S+MySQL 基于springboot网上书店管理系统 计算机毕业设计原创定制

基于springboot网上书店管理系统 摘 要 网上书店管理系统采用B/S结构、java开发语言、以及Mysql数据库等技术。系统主要分为管理员和用户两部分&#xff0c;管理员管理主要功能包括&#xff1a;首页、网站管理&#xff08;轮播图、网站公告&#xff09;人员管理&#xff08;管…

新160个crack - 075-blaster99

运行分析 需要破解code PE分析 VB程序&#xff0c;32位&#xff0c;无壳 静态分析&动态调试 使用VB Decomplier进行分析&#xff0c;发现直接爆出了Code 验证成功

虚拟电厂可视化:智能能源管理新时代

通过图扑可视化技术&#xff0c;全方位展示虚拟电厂的运行状态&#xff0c;优化能源生产与消耗&#xff0c;提高电网效率和稳定性&#xff0c;实现智能能源管理。

降重秘籍:如何利用ChatGPT将重复率从45%降至10%以下?

AIPaperGPT&#xff0c;论文写作神器~ https://www.aipapergpt.com/ 重复率高达45%&#xff1f;很多人一查论文的重复率&#xff0c;瞬间想“完了&#xff0c;这次真的要重写了”。但其实不用这么绝望&#xff01;有了ChatGPT&#xff0c;降重真的没那么难。今天就教你几招&a…

CSP-J/S 复赛算法 并查集-Hash表

文章目录 前言并查集并查集是什么&#xff1f;并查集的应用举几个并查集的例子更加详细的介绍合并两个集合判断元素的关系 并查集在树中的表示方法并查集在树中的表示概念 字符串图示例初始状态合并操作示例最终结构 查找操作和路径压缩示例 并查集的工作原理判断元素是否在同一…

交换排序:冒泡排序、递归实现快速排序

目录 冒泡排序 1.冒泡排序的核心思想 2.冒泡排序的思路步骤 3.冒泡排序代码 4.代码分析 5.对冒泡排序的时间复杂度是O(N^2)进行解析 6.冒泡排序的特性总结 递归实现快速排序(二路划分版本) 1.快速排序基本思路 2.代码思路步骤 3.代码实现 4.代码分析 (1)递归终止条…