信号检测理论(Signal Detection Theory, SDT)

信号检测理论(Signal Detection Theory, SDT)模拟是一种实验设计,用于研究和理解在存在噪声或不确定性的情况下如何做出决策。在心理学、认知科学、工程学和许多其他领域,信号检测理论都非常重要。


一、基础概念:

在信号检测理论的模拟中,通常会涉及以下几个关键概念:

信号(Signal):需要被检测或识别的刺激或信息。
噪声(Noise):干扰信号检测的背景或无关信息。
决策标准(Decision Criterion):用于判断信号是否存在的阈值或标准。

击中(Hit):当信号实际存在且被正确检测到时的情况。
漏报(Miss):当信号实际存在但未被检测到时的情况。
虚报(False Alarm):当信号实际上不存在但被错误地检测为存在时的情况。
正确否定(Correct Rejection):当信号实际上不存在且被正确地判断为不存在时的情况。

请添加图片描述


二、统计决策理论:

(1)两个分布的重叠程度决定了被试对信号和噪音的辨别力(感受性)

请添加图片描述
d ′ d' d被称为辨别力指数(灵敏度)。可以有两个分布的均值差来决定。
重叠越多,辨别力指数越小,辨别力越弱。
重叠越少,辨别力指数越大,辨别力越强。

特别地, d ′ = 0 d'=0 d=0,均值相同,完全重叠(不一定重合),无法辨别。

(2)被试的决策标准决定了其反应倾向:

定义 C C C:决策标准
C的右边判断为“有”,左边判断为“无”

定义 β β β:似然比,可由 Y (击中) Y (虚报) \frac{Y(击中)}{Y(虚报)} Y(虚报)Y(击中)得到,一般给出β后,即可通过计算来确定C的位置(大小)。

β > 1 β>1 β>1 :严格——被试的判断倾向于“无”
β = 1 β=1 β=1 :中等——被试的判断“均等”
β < 1 β<1 β<1 :宽松——被试的判断倾向于“有”
请添加图片描述

(3)ROC曲线

一般也叫等感受曲线,有以下几个特点:

[1]击中率和虚报率呈正相关关系,C增大,二者同时减小;C减小,标准变松,二者同时增大。
[2]击中率不等于虚报率

  • 存在3中极端情况:
    (1)击中率=0:C趋近于正无穷
    (2)击中率=1,C趋近于负无穷
    (3) d ′ = 0 d'=0 d=0:曲线完全重叠,均值相同
    这三种情况意义不大

[3]越往左下,反应标准越严, β β β越大,C越大
[4] d ′ d' d越大,曲线区分度越大

请添加图片描述


三、示例:

下面是一个示例(Julia文件):

1)
Let’s simulate 2 signal distributions, plot them, and compute d’ and the probabilities of the four outcomes with a specific criterion

using Distributions 
using PlotlyJS# --- Signal Detection Theory Simulation --- 信号检测理论(Signal Detection Theory, SDT)# 1. Parameters
dPrime = 1.5  # Sensitivity (d'),灵敏度(判别力指数)
criterion = 0.8  # Response criterion,判断标准# 2. Distributions
dist_noise = Normal(0, 1)  # Noise distribution 噪声分布
dist_signal = Normal(dPrime, 1)  # Signal + noise distribution 信号+噪声分布# 3. Generate trials
nTrials = 1000
signalPresent = rand(Bernoulli(0.5), nTrials)  # 生成一个布尔数组,每个元素表示一次试验中信号是否出现,50% signal presence
stimuli = signalPresent .* rand(dist_signal, nTrials) + (1 .- signalPresent) .* rand(dist_noise, nTrials)# 4. Apply criterion
responses = stimuli .> criterion # 生成一个布尔值数组responses,大于criterion的为true,否则为false
# 5. Calculate outcomes
hits = sum(responses[signalPresent]) # 击中
misses = sum(.!responses[signalPresent]) # 漏报
falseAlarms = sum(responses[.!signalPresent]) # 虚报
correctRejections = sum(.!responses[.!signalPresent]) # 正确否定# --- Visualization with PlotlyJS ---# Generate data for histograms
noise_data = rand(dist_noise, 10000)
signal_data = rand(dist_signal, 10000)
y = max
# Create the histogram traces
noise_trace = PlotlyJS.histogram(x=noise_data, name="Noise", opacity=0.5)
signal_trace = PlotlyJS.histogram(x=signal_data, name="Signal + Noise", opacity=0.5)# Create the criterion line trace,画判断标准线
criterion_trace = PlotlyJS.scatter(x=[criterion, criterion], y=[0, 600],mode="lines",name="Criterion",line=attr(color="red", dash="dash")
)# Create the plot
plt = PlotlyJS.plot([noise_trace, signal_trace, criterion_trace],Layout(xaxis_title="Internal Response",yaxis_title="Frequency",title="Signal Detection Theory Demonstration",barmode="overlay")
)# Display the plot
display(plt)# Display results
println("d': ", dPrime)
println("Criterion: ", criterion)
println("Hits: ", hits, " (", round(hits / sum(signalPresent) * 100, digits=2), "%)")
println("Misses: ", misses, " (", round(misses / sum(signalPresent) * 100, digits=2), "%)")
println("False Alarms: ", falseAlarms, " (", round(falseAlarms / sum(.!signalPresent) * 100, digits=2), "%)")
println("Correct Rejections: ", correctRejections, " (", round(correctRejections / sum(.!signalPresent) * 100, digits=2), "%)")

画出分布图像:
在这里插入图片描述
上图红色虚线就是C,蓝色分布是噪声,红色是信号。

输出:

d': 1.5
Criterion: 0.8
Hits: 369 (73.95%)
Misses: 130 (26.05%)
False Alarms: 89 (17.76%)
Correct Rejections: 412 (82.24%)

ROC曲线相关:

using Distributions
using PlotlyJS# --- Signal Detection Theory Simulation (Multiple d') --- 多个d'的信号检测理论模拟# 1. Parameters
dPrimes = [0.5, 1.0, 1.5, 2.0]  # Range of sensitivities
criteria = range(-3, 3, length=100)  # Range of criteria for ROC ,C变化范围# 2. Distributions
dist_noise = Normal(0, 1)  # Noise distribution 噪声分布# --- ROC Analysis and Visualization ---
# 准备一个ROC曲线图的布局,为后续添加具体的ROC曲线数据做准备。
plt = PlotlyJS.plot(Layout(xaxis_title="False Alarm Rate",yaxis_title="Hit Rate",title="ROC Curves for Different d'",xaxis_range=[0, 1],yaxis_range=[0, 1],xaxis_constrain="domain",  # Ensure the x-axis stays within the plot areayaxis=attr(scaleanchor="x",  # Link y-axis scaling to x-axisscaleratio=1),    # Maintain 1:1 aspect ratio))# Add diagonal reference line
PlotlyJS.add_trace!(plt, PlotlyJS.scatter(x=[0, 1], y=[0, 1], mode="lines", line=attr(color="gray", dash="dash"), name="Chance Level"))for dPrime in dPrimes# 根据不同的d'生成不同的信号分布。因为噪声分布固定,所以d'的大小决定了信号分布的位置。dist_signal = Normal(dPrime, 1)  # Signal + noise distribution 信号+噪声分布# 3. Generate trials (for each d')nTrials = 1000signalPresent = rand(Bernoulli(0.5), nTrials)stimuli = signalPresent .* rand(dist_signal, nTrials) + (1 .- signalPresent) .* rand(dist_noise, nTrials)# 4. ROC CalculationhitRates = zeros(length(criteria))falseAlarmRates = zeros(length(criteria))for (i, criterion) in enumerate(criteria)responses = stimuli .> criterionhits = sum(responses[signalPresent])falseAlarms = sum(responses[.!signalPresent])hitRates[i] = hits / sum(signalPresent)falseAlarmRates[i] = falseAlarms / sum(.!signalPresent)end# 5. Add ROC Curve to PlotPlotlyJS.add_trace!(plt, PlotlyJS.scatter(x=falseAlarmRates, y=hitRates, mode="lines", name="d' = $dPrime"))
end# Display the plot
display(plt)

画出ROC曲线:
在这里插入图片描述
可以发现随 d ′ d' d增大图像越往上


思考:

上面四个率和机器学习中的性能评估指标有相似之处:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1555211.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

TIBCO Jaspersoft Studio 创建数据源并进行测试

1、连接数据源&#xff1a; 右键Data Adapters &#xff0c;然后新建 根自己的情况&#xff0c;进行创建&#xff0c;这里测试用的是excel表格。 2、新建Jasper Report&#xff0c;然后我们选择刚刚创建的数据源 这样report就建好了&#xff0c;然后我们进行测试。 3、先把不…

【源码+文档】基于SpringBoot+Vue的酒店管理系统

&#x1f6a9;如何选题&#xff1f; 如何选题、让题目的难度在可控范围&#xff0c;以及如何在选题过程以及整个毕设过程中如何与老师沟通&#xff0c;这些问题是需要大家在选题前需要考虑的&#xff0c;具体的方法我会在文末详细为你解答。 &#x1f6ad;如何快速熟悉一个项目…

文心智能体——制作你的专属AI

随着社会的进步和互联网技术的发展&#xff0c;人工智能领域正蓬勃发展。最近几年关于人工智能的新闻日渐增多并且成为了当代最大的热点&#xff0c;所有的领域都在引进AI、训练AI、使用AI&#xff0c;AI正逐步融入人们的生活。从前几年chatGPT大语言模型的横空出世&#xff0c…

Finops成本优化企业实践-可视化篇

引言&#xff1a;上一章讨论了finops的一些方法论&#xff0c;笔者在拿到finops官方认证finops-engineer certificate之后&#xff0c;将方法论运用到所在项目组中&#xff0c;并于今年完成了40%的费用节省。在此将这些实践方法总结沉淀&#xff0c;与大家分享。实践包括三篇&a…

[Python学习日记-38] Python 中的函数的名称空间

[Python学习日记-38] Python 中的函数的名称空间 简介 名称空间 作用域查找顺序 简介 在前面学习函数的时候我们发现&#xff0c;函数内部也有一个内存空间是用于存储函数自己的一些变量的&#xff0c;及时这个变量名与外部的变量名一样是也没关系&#xff0c;Python 会优先…

SpringCloud Alibaba - Eureka注册中心,Nacos配置中心

Eureka 1、创建服务端 server:port: 8761 # eureka 默认端口spring:application:name: eureka-server # 应用名称&#xff08;微服务中建议必须定义应用名称&#xff09; SpringBootApplication EnableEurekaServer // 开启eureka注册中心功能 public class EurekaServerAppli…

数据驱动投资:AI在股票市场的应用

当ChatGPT首次亮相时&#xff0c;其卓越的语言处理能力立刻引起了许多行业的广泛关注&#xff0c;投资界也不例外。关于ChatGPT是否能应用于投资决策的问题&#xff0c;迅速成为热门讨论的焦点。 近期&#xff0c;加拿大多伦多大学和印度孟买理工学院的研究人员联合开展了一项…

《Linux从小白到高手》理论篇:Linux的进程管理详解

本篇将介绍Linux的进程管理相关知识&#xff0c;并将深入介绍Linux的进程间相互通信。 进程就是运行中的程序&#xff0c;一个运行着的程序&#xff0c;可能有多个进程。 比如Oracle DB&#xff0c;启动Oracle实例服务后&#xff0c;就会有多个进程。 Linux进程分类 在 Linux…

python实战四:输入一个年份,判断是否是闰年

问题&#xff1a; 从键盘获取一个四位的整数年份&#xff0c;判断其是否是闰年。闰年的判断条件为︰能被4整除但不能被100整除&#xff0c;或者能被400整除。 需求方法&#xff1a; 使用 input() 函数从键盘获取输入。输入的年份是一个字符串。检查输入是否为四位数&#xf…

优优嗨聚集团:债务纠纷下的个人财务困境揭秘

在当今社会&#xff0c;随着经济活动的日益频繁与复杂化&#xff0c;债务问题已成为许多人生活中难以回避的挑战之一。债务纠纷&#xff0c;作为这一问题的直接体现&#xff0c;不仅关乎金钱的得失&#xff0c;更深刻地影响着个人的生活方方面面&#xff0c;从心理健康、家庭关…

vscode 连接云服务器(ubantu 20.04)

更改服务器系统 如果云服务器上的系统不是ubantu20.04的&#xff0c;可以进行更改&#xff1a; 登录云服务官网&#xff08;这里以阿里云为例&#xff09;点击控制台 点击服务器实例 点击更多操作、重置系统 点击重置为其他镜像、系统镜像&#xff1a;选择你要使用的系统镜像…

c++ union内存布局

// // Created by 徐昌真 on 2024/10/5. // #include <iostream> using namespace std;//定义一个union union Data{int a;char s[7]; //char值的范围(-128~127) }; int main() {//创建一个unionData d;d.s[0] 255; //16进制 0xFF 16进制F对应二进制 1111d.s[1] 1; …

瓶颈ing

全排列的回溯算法怎么好理解记忆啊&#xff0c;对着解析理解顺着逻辑也能够推&#xff0c;但是自己写无从下手呜呜呜

探索基于基于人工智能进行的漏洞评估的前景

根据2023年的一份报告 网络安全企业据估计&#xff0c;到 10.5 年&#xff0c;网络犯罪每年将给世界造成 2025 万亿美元的损失。每年记录在案的网络犯罪数量都会创下新高。这要求对传统的安全测试流程进行重大改变。这就是漏洞评估发挥作用的地方。 漏洞评估对于识别系统中的弱…

zookeeper选举kafka集群的controller

zookeeper选举kafka集群的controller目录 文章目录 zookeeper选举kafka集群的controller目录前言一、实操体验controller的选举二、模拟controller选举四、删除controller节点 前言 kafka集群的controller是kafka集群中一个有特殊作用的broker&#xff0c;负责整个kafka集群的…

[python]Flask_Login

flask_login是flask框架中的一个拓展功能&#xff0c;用于更快捷的实现用户会话管理功能&#xff0c;主要处理登录&#xff0c;注销和长时间会话存储的功能处理。 目录 安装 使用 第一步,配置SECRET_KEY 第二步,创建LoginManager实例绑定app 第三步,用户类继承UserMixin …

【前端vue2 + element ui】Dialog 对话框:.vue组件跳转

【前端vue2 element ui】Dialog 对话框&#xff1a;.vue组件跳转 写在最前面一、父组件调用1、<template>1.1 跳转位置1.2 弹窗调用 2、<script>2.1 import2.2 export2.3 methods 二、子组件调用1、<template>2、<script>2.1 export2.2 watch和method…

【Unity】unity安卓打包参数(个人复习向/有不足之处欢迎指出/侵删)

1.Texture Compression 纹理压缩 设置发布后的纹理压缩格式 Use Player Settings:使用在播放器设置中设置的纹理压缩格式 ETC&#xff1a;使用ETC格式&#xff08;兼容&#xff09; ETC2&#xff1a;使用ETC2格式&#xff08;很多设备不支持&#xff09; ASTC&#xff1a;使用…

10.5今日错题解析(软考)

目录 前言面向对象技术——设计模式的应用场景计算机组成与体系结构——逻辑运算 前言 这是用来记录我备考软考设计师的错题的&#xff0c;今天知识点为设计模式的应用场景、逻辑运算&#xff0c;大部分错题摘自希赛中的题目&#xff0c;但相关解析是原创&#xff0c;有自己的…

国外电商系统开发-运维系统添加拓扑节点

通过创建节点的方式&#xff0c;把Linux服务器&#xff0c;还有路由器、交换机、防火墙等等网络设备加入网络拓扑中。 保存后看到如下列表&#xff1a;