[C++]使用纯opencv部署yolov11-pose姿态估计onnx模型

【算法介绍】

使用纯OpenCV部署YOLOv11-Pose姿态估计ONNX模型是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,可以通过一些间接的方法来实现这一目标,即将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

YOLOv11-Pose结合了YOLO(You Only Look Once)的高效物体检测算法和Pose Estimation(姿态估计)专注于识别人体关键点的能力,能在多种计算平台上实时处理人体姿态数据。其采用的核心原理是特殊神经网络结构YOLOv3-tiny,能快速计算出图像中所有人体关键点的位置,实现姿态估计。同时,该模型还采用了ONNX格式,这是一种开放的模型表示,使得模型能在不同的深度学习框架和工具之间轻松转换。

在使用OpenCV部署YOLOv11-Pose ONNX模型时,需要确保开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。具体步骤包括加载ONNX模型、预处理输入图像、将预处理后的图像输入到模型中获取检测结果、对检测结果进行后处理等。由于YOLOv11是一个复杂的模型,其输出可能包含多个层的信息,因此需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。

总的来说,使用纯OpenCV部署YOLOv11-Pose ONNX模型需要深入理解相关领域的知识,包括YOLOv11的模型架构、OpenCV的DNN模块以及ONNX格式等。

【效果展示】

【实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov11_pose.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.using namespace std;
using namespace cv;
using namespace dnn;template<typename _Tp>
int yolov11(_Tp& task, cv::Mat& img, std::string& model_path)
{cv::dnn::Net net;if (task.ReadModel(net, model_path, false)) {std::cout << "read net ok!" << std::endl;}else {return -1;}//生成随机颜色std::vector<cv::Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(cv::Scalar(b, g, r));}std::vector<OutputParams> result;bool isPose = false;if (typeid(task) == typeid(Yolov8Pose)) {isPose = true;}PoseParams poseParams;if (task.Detect(img, net, result)) {if (isPose)DrawPredPose(img, result, poseParams);elseDrawPred(img, result, task._className, color);}else {std::cout << "Detect Failed!" << std::endl;}system("pause");return 0;
}template<typename _Tp>
int video_demo(_Tp& task, std::string& model_path)
{std::vector<cv::Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(cv::Scalar(b, g, r));}std::vector<OutputParams> result;cv::VideoCapture cap("video.avi");if (!cap.isOpened()){std::cout << "open capture failured!" << std::endl;return -1;}cv::Mat frame;bool isPose = false;PoseParams poseParams;
#ifdef VIDEO_OPENCVcv::dnn::Net net;if (typeid(task) == typeid(Yolov11Pose)) {isPose = true;}if (task.ReadModel(net, model_path, true)) {std::cout << "read net ok!" << std::endl;}else {std::cout << "read net failured!" << std::endl;return -1;}#elseif (typeid(task) == typeid(Yolov8PoseOnnx)) {isPose = true;}if (task.ReadModel(model_path, true)) {std::cout << "read net ok!" << std::endl;}else {std::cout << "read net failured!" << std::endl;return -1;}#endifwhile (true){cap.read(frame);if (frame.empty()){std::cout << "read to end" << std::endl;break;}result.clear();
#ifdef VIDEO_OPENCVif (task.Detect(frame, net, result)) {if (isPose)DrawPredPose(frame, result, poseParams,true);elseDrawPred(frame, result, task._className, color,true);}
#elseif (task.OnnxDetect(frame, result)) {if (isPose)DrawPredPose(frame, result, poseParams, true);elseDrawPred(frame, result, task._className, color, true);}
#endifint k = waitKey(10);if (k == 27) { //esc break;}}cap.release();system("pause");return 0;
}int main() {string detect_model_path = "./yolo11n-pose.onnx";Yolov11Pose detector;video_demo(detector, detect_model_path);
}

【视频演示】

C++使用纯opencv部署yolov11-pose姿态估计onnx模型_哔哩哔哩_bilibili【测试环境】vs2019 cmake==3.24.3 opencv==4.8.0【运行步骤】下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt转换模型:yolo export model=yolo11n-pose.pt format=onnx dynamic=False opset=, 视频播放量 0、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,使用易语言调用opencv进行视频和摄像头每一帧处理,C#使用纯OpenCvSharp部署yolov8-pose姿态识别,C# winform部署yolov11目标检测的onnx模型,基于opencv封装易语言读写视频操作模块支持视频读取和写出,使用C++部署yolov8的onnx和bytetrack实现目标追踪,C++使用yolov11的onnx模型结合opencv和bytetrack实现目标追踪,yolov5-7.0部署在ros机器人操作系统视频演示,使用C#部署openvino-yolov5s模型,使用C#调用libotrch-yolov5模型实现全网最快winform目标检测icon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1491XY2EWk/
【源码下载】

https://download.csdn.net/download/FL1623863129/89847502


【测试环境】

vs2019
cmake==3.24.3
opencv==4.8.0

【运行步骤】

下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt

转换模型:yolo export model=yolo11n-pose.pt format=onnx dynamic=False opset=12 

编译项目源码,将模型,视频路径对应到源码即可运行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1555132.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Apollo9.0 Planning2.0决策规划算法代码详细解析 (5): OnLanePlanning::Init()

&#x1f31f; 面向自动驾驶规划算法工程师的专属指南 &#x1f31f; 欢迎来到《Apollo9.0 Planning2.0决策规划算法代码详细解析》专栏&#xff01;本专栏专为自动驾驶规划算法工程师量身打造&#xff0c;旨在通过深入剖析Apollo9.0开源自动驾驶软件栈中的Planning2.0模块&am…

[Python] 编程入门:理解变量类型

文章目录 [toc] 整数常见操作 浮点数字符串字符串中混用引号问题字符串长度计算字符串拼接 布尔类型动态类型特性类型转换结语 收录专栏&#xff1a;[Python] 在编程中&#xff0c;变量是用于存储数据的容器&#xff0c;而不同的变量类型则用来存储不同种类的数据。Python 与 C…

通信工程学习:什么是RARP反向地址解析协议

RARP&#xff1a;反向地址解析协议 RARP&#xff08;Reverse Address Resolution Protocol&#xff0c;反向地址解析协议&#xff09;是一种网络协议&#xff0c;其主要作用是在设备只知道物理地址&#xff08;如MAC地址&#xff09;时&#xff0c;允许其从网关服务器的地址解析…

YOLO11改进 | 卷积模块 | 轻量化GSConv替换普通的conv

秋招面试专栏推荐 &#xff1a;深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 为什么订阅我的专栏&#xff1f; 前沿技术解读&#xff1a;专栏不仅限于YOLO系列的改进&#xff0c;还会涵盖各类主流与新兴网络的最新研究成果&#xff0c;帮助你紧跟技术潮流…

使用TM1618控制LED了解P-MOS和N-MOS的开漏输出的不同

数据手册上的截取内容 手册中推荐的共阴/阳极电路 可以发现GRID总接LED的负极&#xff0c;SEG引脚接的是LED 正极 分析输出的MOS管类型可以很好的知道原因 图片来源 通过都是开漏输出可以看出&#xff0c;引脚引出的内部电路是不同的。P-mos引出的是漏极&#xff0c;导通时…

记录使用gym和stable_baseline3训练出成功通关的贪吃蛇ai

参考自b站up林亦LYi的开源项目 传送门 本次只训练了cnn版本的 第一次接触这种项目&#xff0c;建python虚拟环境时出了点难以说清楚的小问题&#xff0c;安装不上requirement.txt中的gym库那个版本&#xff0c;折腾了一会&#xff0c;自己都乱了头绪&#xff0c;最后导致训练…

FL Studio 24.1.2.4381中文版免费下载及FL Studio 24最新使用学习教程

家好呀&#xff0c;作为一个资深的音乐爱好者和制作人&#xff0c;今天我要安利一个我最近超级痴迷的数字音频工作站软件——FL Studio24.1.2.4381中文版。这款产品可是让我的音乐创作之路如虎添翼&#xff0c;快来跟我一起看看它的炫酷功能吧&#xff01; 最近接到很多小伙伴的…

【小记】2024/10/4

1. GMT中颜色设置 使用pygmt时&#xff0c;颜色设置应该使用全称&#xff0c;简称时会出现错误&#xff0c;这与我们的习惯有所区别。 2. ENVI学习 3、投影坐标

高级图片编辑器Photopea

什么是 Photopea &#xff1f; Photopea 是一款免费的在线工具&#xff0c;用于编辑光栅和矢量图形&#xff0c;支持PSD、AI 和 Sketch文件。 功能上&#xff0c;Photopea 和 老苏之前介绍的 miniPaint 比较像 文章传送门&#xff1a;在线图片编辑器miniPaint 支持的格式 复杂…

【可视化大屏】中间部分的数字和地图

中间部分分为上面数字部分和下面地图两大部分 上面的数字又分为上面数字下面文字&#xff0c;数字部分是ul中包含两个li&#xff0c;采用flex布局&#xff0c;使两个li在同一行 <!-- 中间部分 --><div class"column"><div class"no">&l…

【第三版 系统集成项目管理工程师】第15章 组织保障

持续更新。。。。。。。。。。。。。。。 【第三版】第十五章 组织保障 15.1信息和文档管理15.1.1 信息和文档1.信息系统信息-P5462.信息系统文档-P546 15.1.2 信息(文档)管理规则和方法1.信息(文档)编制规范-P5472.信息(文档)定级保护-P5483.信息(文档)配置管理-P549练习 15.…

etcd 快速入门

简介 随着go与kubernetes的大热&#xff0c;etcd作为一个基于go编写的分布式键值存储&#xff0c;逐渐为开发者所熟知&#xff0c;尤其是其还作为kubernetes的数据存储仓库&#xff0c;更是引起广泛专注。 本文我们就来聊一聊etcd到底是什么及其工作机制。 首先&#xff0c;…

【智能算法应用】蒲公英优化算法求解二维路径规划问题

摘要 在二维路径规划问题中&#xff0c;通常需要在不规则的障碍物环境中找到一条从起点到终点的最优路径。本文应用蒲公英优化算法&#xff08;DOA&#xff09;进行路径规划&#xff0c;其能够有效避开障碍物并找到最短路径。通过实验验证&#xff0c;DOA具有收敛速度快、全局…

VGG原理与实战

VGG网络结构 这也更好的块状结构,256个卷积核 卷积就是我们的一个特征图啊往往都会缩小 &#xff0c;然后的话但它通道不会变.卷积一般是使用我们的通道C变大,磁化但是它的通道就是我们那个H和W一般都会变小.下采样的意思就是使分辨率变小 vgg—block内的卷积层都是同结构的意…

Kubernetes资源详解

华子目录 1.Kubernetes中的资源1.1资源管理介绍1.2资源管理方式1.2.1命令式对象管理1.2.2kubectl常见command命令1.2.3资源类型1.2.4常用资源类型 基本命令示例运行和调试命令示例高级命令示例总结 其他命令示例 1.Kubernetes中的资源 1.1资源管理介绍 在kubernetes中&#xf…

Nacos理论知识+应用案例+高级特性剖析

一、理论知识 Nacos功能 Nacos常用于注册中心、配置中心 Nacos关键特性 1、服务发现和服务健康监测 nacos作为服务注册中心可用于服务发现,并支持传输层&#xff08;TCP&#xff09;和应用层(HTTP&#xff09;的健康检查&#xff0c;并提供了agent上报和nacos server端主动…

Transformer架构概述(二)

目录 1. Transformer架构概述 1.1 《Attention is All You Need》论文概述 1.2 Transformer的模块组成 1.3 Encoder 和 Decoder 的区别与联系 2. Transformer的并行计算效率相对于RNN的提升 2.1 RNN中的顺序处理问题 2.2 Transformer中的并行化优势 3. Self-Attention机…

Pikachu-PHP反序列化

从后端代码可以看出&#xff0c;拿到序列化后的字符串&#xff0c;直接做反序列化&#xff1b;并且在前端做了展示&#xff1b; 如果虚拟化后的字符串&#xff0c;包含alert 内容&#xff0c;反序列化后&#xff0c;就会弹出窗口 O:1:"S":1:{s:4:"test";s…

OpenJudge | 置换选择排序

总时间限制: 1000ms 内存限制: 65536kB 描述 给定初始整数顺串&#xff0c;以及大小固定并且初始元素已知的二叉最小堆&#xff08;为完全二叉树或类似完全二叉树&#xff0c;且父元素键值总小于等于任何一个子结点的键值&#xff09;&#xff0c;要求利用堆实现置换选择排序&a…

Gralloc图形缓冲的分配过程

广告 首先帮我朋友打个广告 我们一起在运营一个视频号 感兴趣的可以帮忙点击右边这个小铃铛 铃铛 序 其实越往底下走在很多人嘴里就会变得很玄乎&#xff0c;变得不可思议&#xff0c;这里的gralloc就是一个native service&#xff0c;只是分装了一些调用接口&#xff0c;上…