YOLO11改进|卷积篇|引入全维动态卷积ODConv

在这里插入图片描述

目录

    • 一、【ODConv】全维动态卷积
      • 1.1【ODConv】卷积介绍
      • 1.2【ODConv】核心代码
    • 二、添加【ODConv】卷积
      • 2.1STEP1
      • 2.2STEP2
      • 2.3STEP3
      • 2.4STEP4
    • 三、yaml文件与运行
      • 3.1yaml文件
      • 3.2运行成功截图

一、【ODConv】全维动态卷积

1.1【ODConv】卷积介绍

在这里插入图片描述

ODConv利用一种全新的多维注意力机制和并行策略,在任何卷积层沿内核空间的四个维度学习卷积内核的注意力。 作为常规卷积的替代品,ODConv 可以插入到许多 CNN 架构中。也就是说是的即插即用的模块。通过下图可以看到,新引入的三个注意力,分别沿空域维度、输入通道维度以及输出通道维度
在这里插入图片描述
以下是ODConv的工作流程图以及简单流程介绍

  1. 输入处理阶段:
    GAP (Global Average Pooling):对输入特征 x 进行全局平均池化,生成一个全局的特征向量。此操作减少了空间维度,保留了通道信息的全局统计特征。
    FC (全连接层):全连接层通过对池化后的全局特征向量进行线性变换,将其投射到一个新的特征空间,增强特征的表达能力。
    ReLU 激活函数:对全连接层的输出应用 ReLU 激活函数,增加模型的非线性表示能力。
  2. 多分支注意力模块:
    W1 到 Wn 权重生成:每个分支都生成一组通道权重,通过学习不同的权重矩阵 𝑊𝑖,每个权重矩阵对应不同的通道或空间特征子集。
    α 权重系数:通过多个 Sigmoid 激活的全连接层,对每个分支生成权重系数 α,这些系数用来控制每个分支的特征重要性。
    例如:α_s1, α_s2,… 是针对第一个分支生成的权重,α_c1, α_c2,… 是针对第二个分支的权重,依次类推。
    特征加权:每个分支的权重系数 α 通过逐元素乘法操作,应用到对应的特征上。这样可以在每个分支中对输入特征进行不同的加权处理,突出不同的重要特征。
  3. 加权特征融合阶段:
    Softmax 权重分配:在最后的加权阶段,使用 Softmax 函数对最终的分支权重进行归一化,以确保所有分支的贡献相对平衡。Softmax 可以确保加权的权重和为1,避免过分依赖某一个特定分支。
    加法操作:所有加权后的特征通过逐元素相加操作融合在一起,生成最终的输出 y。
  4. 优势:
    多尺度特征捕捉:每个分支的 权重系数 α 能够分别对不同特征进行加权处理,允许模型捕捉不同尺度、不同细节层次的特征。这使得模型能够在更精细的层次上理解输入数据。
    灵活的特征表达:通过多个分支的设计,该模块可以根据不同的任务要求灵活地调整不同通道或特征子集的权重,从而提升对复杂数据的适应能力。
    特征融合的有效性:Softmax 的归一化处理保证了所有分支的特征都能有效地融合在一起,而不是过分依赖某个特定的特征子集,确保模型在多任务或多模态环境下具备更强的鲁棒性。
    高效的特征筛选:通过 Sigmoid 和 Softmax 的结合,模型能够有效筛选和权衡不同分支的贡献,突出最具代表性的特征,提高对关键特征的捕捉能力。

在这里插入图片描述

1.2【ODConv】核心代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograddef autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class Attention(nn.Module):def __init__(self, in_planes, out_planes, kernel_size, groups=1, reduction=0.0625, kernel_num=4, min_channel=16):super(Attention, self).__init__()attention_channel = max(int(in_planes * reduction), min_channel)self.kernel_size = kernel_sizeself.kernel_num = kernel_numself.temperature = 1.0self.avgpool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Conv2d(in_planes, attention_channel, 1, bias=False)self.bn = nn.BatchNorm2d(attention_channel)self.relu = nn.ReLU(inplace=True)self.channel_fc = nn.Conv2d(attention_channel, in_planes, 1, bias=True)self.func_channel = self.get_channel_attentionif in_planes == groups and in_planes == out_planes:  # depth-wise convolutionself.func_filter = self.skipelse:self.filter_fc = nn.Conv2d(attention_channel, out_planes, 1, bias=True)self.func_filter = self.get_filter_attentionif kernel_size == 1:  # point-wise convolutionself.func_spatial = self.skipelse:self.spatial_fc = nn.Conv2d(attention_channel, kernel_size * kernel_size, 1, bias=True)self.func_spatial = self.get_spatial_attentionif kernel_num == 1:self.func_kernel = self.skipelse:self.kernel_fc = nn.Conv2d(attention_channel, kernel_num, 1, bias=True)self.func_kernel = self.get_kernel_attentionself._initialize_weights()def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)if isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)def update_temperature(self, temperature):self.temperature = temperature@staticmethoddef skip(_):return 1.0def get_channel_attention(self, x):channel_attention = torch.sigmoid(self.channel_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)return channel_attentiondef get_filter_attention(self, x):filter_attention = torch.sigmoid(self.filter_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)return filter_attentiondef get_spatial_attention(self, x):spatial_attention = self.spatial_fc(x).view(x.size(0), 1, 1, 1, self.kernel_size, self.kernel_size)spatial_attention = torch.sigmoid(spatial_attention / self.temperature)return spatial_attentiondef get_kernel_attention(self, x):kernel_attention = self.kernel_fc(x).view(x.size(0), -1, 1, 1, 1, 1)kernel_attention = F.softmax(kernel_attention / self.temperature, dim=1)return kernel_attentiondef forward(self, x):x = self.avgpool(x)x = self.fc(x)# x = self.bn(x) # 在外面我提供了一个bn这里会报错x = self.relu(x)return self.func_channel(x), self.func_filter(x), self.func_spatial(x), self.func_kernel(x)class ODConv2d(nn.Module):def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1,reduction=0.0625, kernel_num=4):super(ODConv2d, self).__init__()in_planes = in_planesself.in_planes = in_planesself.out_planes = out_planesself.kernel_size = kernel_sizeself.stride = strideself.padding = paddingself.dilation = dilationself.groups = groupsself.kernel_num = kernel_numself.attention = Attention(in_planes, out_planes, kernel_size, groups=groups,reduction=reduction, kernel_num=kernel_num)self.weight = nn.Parameter(torch.randn(kernel_num, out_planes, in_planes//groups, kernel_size, kernel_size),requires_grad=True)self._initialize_weights()if self.kernel_size == 1 and self.kernel_num == 1:self._forward_impl = self._forward_impl_pw1xelse:self._forward_impl = self._forward_impl_commondef _initialize_weights(self):for i in range(self.kernel_num):nn.init.kaiming_normal_(self.weight[i], mode='fan_out', nonlinearity='relu')def update_temperature(self, temperature):self.attention.update_temperature(temperature)def _forward_impl_common(self, x):# Multiplying channel attention (or filter attention) to weights and feature maps are equivalent,# while we observe that when using the latter method the models will run faster with less gpu memory cost.channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)batch_size, in_planes, height, width = x.size()x = x * channel_attentionx = x.reshape(1, -1, height, width)aggregate_weight = spatial_attention * kernel_attention * self.weight.unsqueeze(dim=0)aggregate_weight = torch.sum(aggregate_weight, dim=1).view([-1, self.in_planes // self.groups, self.kernel_size, self.kernel_size])output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,dilation=self.dilation, groups=self.groups * batch_size)output = output.view(batch_size, self.out_planes, output.size(-2), output.size(-1))output = output * filter_attentionreturn outputdef _forward_impl_pw1x(self, x):channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)x = x * channel_attentionoutput = F.conv2d(x, weight=self.weight.squeeze(dim=0), bias=None, stride=self.stride, padding=self.padding,dilation=self.dilation, groups=self.groups)output = output * filter_attentionreturn outputdef forward(self, x):return self._forward_impl(x)class Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = ODConv2d(c_, c2, k[1], 1)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3_ODConv(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

二、添加【ODConv】卷积

2.1STEP1

首先找到ultralytics/nn文件路径下新建一个Add-module的python文件包【这里注意一定是python文件包,新建后会自动生成_init_.py】,如果已经跟着我的教程建立过一次了可以省略此步骤,随后新建一个ODConv.py文件并将上文中提到的注意力机制的代码全部粘贴到此文件中,如下图所示在这里插入图片描述

2.2STEP2

在STEP1中新建的_init_.py文件中导入增加改进模块的代码包如下图所示
在这里插入图片描述

2.3STEP3

找到ultralytics/nn文件夹中的task.py文件,在其中按照下图添加在这里插入图片描述

2.4STEP4

定位到ultralytics/nn文件夹中的task.py文件中的def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)函数添加如图代码,【如果不好定位可以直接ctrl+f搜索定位】

在这里插入图片描述

三、yaml文件与运行

3.1yaml文件

以下是添加【ODConv】卷积在Backbone中的yaml文件,大家可以注释自行调节,效果以自己的数据集结果为准

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, ODConv2d, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, ODConv2d, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, ODConv2d, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, ODConv2d, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

以上添加位置仅供参考,具体添加位置以及模块效果以自己的数据集结果为准

3.2运行成功截图

在这里插入图片描述
这里可以看到Gflops降低了,如果想将模型的轻量化作为一个优势的话可以考虑这个卷积,而且亲测在我的数据集上涨点又轻量

OK 以上就是添加【ODConv】卷积的全部过程了,后续将持续更新尽情期待

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1555051.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

操作系统实验之银行算法

一、实验目的 采用高级语言编写一个动态分配系统资源的程序,模拟死锁现象,观察死锁发生的条件,并采用适当的算法,有效地防止死锁的发生。 二、实验内容 本次实验采用银行算法防止死锁的发生。设有3个并发进程共享10个系统资源。在…

无神论文解读之ControlNet:Adding Conditional Control to Text-to-Image Diffusion Models

一、什么是ControlNet ControlNet是一种能够控制模型生成内容的方法,能够对文生图等模型添加限制信息(边缘、深度图、法向量图、姿势点图等),在当今生成比较火的时代很流行。 这种方法使得能够直接提供空间信息控制图片以更细粒…

AQS机制详解

案例一 public class AqsThread extends Thread {private Lock lock;public AqsThread(String name, Lock lock) {super(name);this.lock lock;}Overridepublic void run() {lock.lock();try {System.out.println(Thread.currentThread().getName() "running");} …

【LeetCode】每日一题 2024_10_5 完成旅途的最少时间(二分答案)

前言 每天和你一起刷 LeetCode 每日一题~ 大家国庆节快乐呀~ LeetCode 启动! 突然发现,国庆的每日一题,不是坐公交就是坐火车,不是坐火车就是做飞机,这就是你的国庆旅游计划吗!力扣! 题目&a…

图表不会做怎么办?AI一键生成好看图表!

本期教你如何用AI一键生成各种数据图表! 本文阅读难度:★☆☆☆☆ 看看别人做的这些图表,是不是挺好看的? 特别是作为接商单的新写手,看到这些,头都大了,该怎么办呢? 不用怕&…

ModuleNotFoundError: No module named ‘package‘

报错: Traceback (most recent call last): File “”, line 198, in run_module_as_main File “”, line 88, in run_code File "D:\python\helloworld.venv\Scripts\pip.exe_main.py", line 4, in File "D:\python\helloworld.venv\Lib\site-pac…

MAC备忘录空白解决方案

打开icloud->备忘录 取消勾选同步此MAC后再次勾选,然后点击完成即可。

S7-200 SMART的数据类型说明

S7-200 SMART的数据主要分为: 与实际输入/输出信号相关的输入/输出映象区: I:数字量输入(DI)Q:数字量输出(DO)AI:模拟量输入AQ:模拟量输出 内部数据存储区…

NVIDIA网卡系列之ConnectX-4规格信息(50G-PCIe 3.0x8-8PF256VF-2015年发布)

背景 NVIDIA ConnectX-4系列的网卡,早期还在Mellanox未被NVIDIA收购的时候就发布了,支持50G,PCIe3.0,最大x8通道lanes。 是50G级别的一代(10G-CX3,50G-CX4,100G-CX5,200G-CX6&#…

基于Python的自然语言处理系列(24):BiDAF(双向注意力流)

在自然语言处理领域,机器阅读理解(Machine Comprehension, MC)是一个重要的任务。在这篇博文中,我们将实现论文 BiDAF 中提出的双向注意力流模型。BiDAF 主要改进了传统注意力机制中的早期信息摘要问题,并引入了字符嵌入来加强对单词细粒度信息的理解。 1. 加载 SQuAD 数据…

ThreadLocal底层原理及数据结构详解

ThreadLocal允许为每个线程创建独立的变量副本,使得同一个ThreadLocal对象在不同的线程中拥有不同的值。它的主要作用是在并发环境下提供线程隔离,避免多个线程共享同一个变量,从而减少线程间的相互干扰。 ThreadLocal的核心在于为每个线程维…

【案例】距离限制模型透明

开发平台:Unity 2023 开发工具:Unity ShaderGraph   一、效果展示 二、路线图 三、案例分析 核心思路:计算算式:透明值 实际距离 / 最大距离 (实际距离 ≤ 最大距离)   3.1 说明 | 改变 Alpha 值 在 …

【JAVA开源】基于Vue和SpringBoot的服装生产管理系统

本文项目编号 T 066 ,文末自助获取源码 \color{red}{T066,文末自助获取源码} T066,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…

git diff 查看到一行变动,但是目测无差异怎么办?

1. 目测无变化 直接用 git diff main.js 提示有一行变动,但是目测看不出来差异。 结果如图:up panel. 2. 大概是空格的问题,使用参数 --ws-error-highlightall $ git diff --ws-error-highlightall main.js结果如图: down panel.

黑神话:仙童,数据库自动反射魔法棒

黑神话:仙童,数据库自动反射魔法棒 Golang 通用代码生成器仙童发布了最新版本电音仙女尝鲜版十一及其介绍视频,视频请见:https://www.bilibili.com/video/BV1ET4wecEBk/ 此视频介绍了使用最新版的仙童代码生成器,将 …

Llama 3.2 微调指南

让我们通过微调 Llama 3.2 来找到一些精神上的平静。 我们需要安装 unsloth,以更小的尺寸实现 2 倍的快速训练 !pip install unsloth!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] githttps://github.co…

Spring Boot技术在大学生就业服务中的应用

1系统概述 1.1 研究背景 如今互联网高速发展,网络遍布全球,通过互联网发布的消息能快而方便的传播到世界每个角落,并且互联网上能传播的信息也很广,比如文字、图片、声音、视频等。从而,这种种好处使得互联网成了信息传…

视频格式批量转换:一键操作,轻松搞定

在处理大量视频文件时,格式转换是一个常见需求,不同的平台和设备对视频格式的要求各不相同,批量转换视频格式能显著提高工作效率。帮助大家轻松应对各种视频格式转换难题。 1.在“视频剪辑高手”的功能选项里切换到“批量转换视频”版块上 2.…

大学生就业服务:Spring Boot技术实践

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常适…

C++结构体定义和创建

// // Created by 徐昌真 on 2024/10/5. // #include <iostream> using namespace std;int main() {//结构体的定义 struct 结构体名字 { 结构体成员名字 }struct Book{string name;double price;int value;}java; //java是创建的结构体//创建结构体//这是第一种方式Boo…