YOLO11改进|注意力机制篇|引入HAT超分辨率重建模块

在这里插入图片描述

目录

    • 一、HAttention注意力机制
      • 1.1HAttention注意力介绍
      • 1.2HAT核心代码
    • 二、添加HAT注意力机制
      • 2.1STEP1
      • 2.2STEP2
      • 2.3STEP3
      • 2.4STEP4
    • 三、yaml文件与运行
      • 3.1yaml文件
      • 3.2运行成功截图

一、HAttention注意力机制

1.1HAttention注意力介绍

在这里插入图片描述

HAT模型 通过结合卷积特征提取与多尺度注意力机制,具备了强大的图像重建能力。它的优势在于能有效整合局部和全局信息,并通过残差连接和通道注意力等方式提高网络的表达能力和重建质量,适用于图像超分辨率和图像重建任务。
下面是HAT的工作流程和主要模块的作用

  • 浅层特征提取 (Shallow Feature Extraction)
    输入图像首先经过卷积操作提取低级特征。该过程用来捕捉图像的基础信息,如边缘、颜色等,形成初步的特征图。
  • 深层特征提取 (Deep Feature Extraction)
    浅层特征通过多个RHAG模块进行深度特征提取。RHAG由多个HAB(混合注意力块)和OCAB(重叠交叉注意力块)组成:
    HAB:包含 CAB (Channel Attention Block) 和 (S)W-MSA (Shifted Window Multi-Head Self-Attention) 结构。
    CAB (通道注意力块) 使用全局池化和通道注意力机制,专注于不同通道之间的依赖关系,以增强特定通道的特征表示。
    (S)W-MSA 是一种窗口划分的自注意力机制,通过窗口化操作计算注意力,减少计算开销,同时增强局部与全局信息的交互。
    OCAB:通过交叉注意力机制结合局部和全局特征,并通过重叠区域确保信息的连贯性和连续性。
    优势:深度特征提取模块通过多个注意力模块结合局部和全局信息,实现对复杂特征的高效捕捉,同时保持较低的计算成本。
  • 图像重建 (Image Reconstruction)
    深层特征经过多个RHAG模块后,通过上采样操作重建回高分辨率图像。模型将提取到的深层特征与初始输入进行特征融合,生成更高质量的重建图像。
  • 模块优势
    RHAG (Residual Hybrid Attention Group):该模块通过残差连接增强网络的梯度流,避免深层网络中的梯度消失问题,同时结合多种注意力机制,提高特征提取的准确性和效率。
    HAB (Hybrid Attention Block):该模块将通道注意力与窗口自注意力相结合,在不同尺度上捕捉图像特征。通道注意力增强了各个特征通道的表示能力,而窗口自注意力通过局部和全局上下文的信息交互来提升整体的特征感知能力。
    OCAB (Overlapping Cross-Attention Block):通过交叉注意力和重叠区域融合,使模型在捕捉局部特征的同时,能够保持对全局特征的感知,避免信息的割裂。

在这里插入图片描述

1.2HAT核心代码

import math
import torch
import torch.nn as nn
from basicsr.utils.registry import ARCH_REGISTRY
from basicsr.archs.arch_util import to_2tuple, trunc_normal_
from einops import rearrangedef drop_path(x, drop_prob: float = 0., training: bool = False):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py"""if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0], ) + (1, ) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()  # binarizeoutput = x.div(keep_prob) * random_tensorreturn outputclass DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py"""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):return drop_path(x, self.drop_prob, self.training)class ChannelAttention(nn.Module):"""Channel attention used in RCAN.Args:num_feat (int): Channel number of intermediate features.squeeze_factor (int): Channel squeeze factor. Default: 16."""def __init__(self, num_feat, squeeze_factor=16):super(ChannelAttention, self).__init__()self.attention = nn.Sequential(nn.AdaptiveAvgPool2d(1),nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),nn.ReLU(inplace=True),nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),nn.Sigmoid())def forward(self, x):y = self.attention(x)return x * yclass CAB(nn.Module):def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30):super(CAB, self).__init__()self.cab = nn.Sequential(nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),nn.GELU(),nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),ChannelAttention(num_feat, squeeze_factor))def forward(self, x):return self.cab(x)class Mlp(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xdef window_partition(x, window_size):"""Args:x: (b, h, w, c)window_size (int): window sizeReturns:windows: (num_windows*b, window_size, window_size, c)"""b, h, w, c = x.shapex = x.view(b, h // window_size, window_size, w // window_size, window_size, c)windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)return windowsdef window_reverse(windows, window_size, h, w):"""Args:windows: (num_windows*b, window_size, window_size, c)window_size (int): Window sizeh (int): Height of imagew (int): Width of imageReturns:x: (b, h, w, c)"""b = int(windows.shape[0] / (h * w / window_size / window_size))x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)return xclass WindowAttention(nn.Module):r""" Window based multi-head self attention (W-MSA) module with relative position bias.It supports both of shifted and non-shifted window.Args:dim (int): Number of input channels.window_size (tuple[int]): The height and width of the window.num_heads (int): Number of attention heads.qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if setattn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0proj_drop (float, optional): Dropout ratio of output. Default: 0.0"""def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):super().__init__()self.dim = dimself.window_size = window_size  # Wh, Wwself.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim**-0.5# define a parameter table of relative position biasself.relative_position_bias_table = nn.Parameter(torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nHself.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)trunc_normal_(self.relative_position_bias_table, std=.02)self.softmax = nn.Softmax(dim=-1)def forward(self, x, rpi, mask=None):"""Args:x: input features with shape of (num_windows*b, n, c)mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None"""b_, n, c = x.shapeqkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)q = q * self.scaleattn = (q @ k.transpose(-2, -1))relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nHrelative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Wwattn = attn + relative_position_bias.unsqueeze(0)if mask is not None:nw = mask.shape[0]attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)attn = attn.view(-1, self.num_heads, n, n)attn = self.softmax(attn)else:attn = self.softmax(attn)attn = self.attn_drop(attn)x = (attn @ v).transpose(1, 2).reshape(b_, n, c)x = self.proj(x)x = self.proj_drop(x)return xclass HAB(nn.Module):r""" Hybrid Attention Block.Args:dim (int): Number of input channels.input_resolution (tuple[int]): Input resolution.num_heads (int): Number of attention heads.window_size (int): Window size.shift_size (int): Shift size for SW-MSA.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.drop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self,dim,input_resolution,num_heads,window_size=7,shift_size=0,compress_ratio=3,squeeze_factor=30,conv_scale=0.01,mlp_ratio=4.,qkv_bias=True,qk_scale=None,drop=0.,attn_drop=0.,drop_path=0.,act_layer=nn.GELU,norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioif min(self.input_resolution) <= self.window_size:# if window size is larger than input resolution, we don't partition windowsself.shift_size = 0self.window_size = min(self.input_resolution)assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'self.norm1 = norm_layer(dim)self.attn = WindowAttention(dim,window_size=to_2tuple(self.window_size),num_heads=num_heads,qkv_bias=qkv_bias,qk_scale=qk_scale,attn_drop=attn_drop,proj_drop=drop)self.conv_scale = conv_scaleself.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def forward(self, x, x_size, rpi_sa, attn_mask):h, w = x_sizeb, _, c = x.shape# assert seq_len == h * w, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(b, h, w, c)# Conv_Xconv_x = self.conv_block(x.permute(0, 3, 1, 2))conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c)# cyclic shiftif self.shift_size > 0:shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))attn_mask = attn_maskelse:shifted_x = xattn_mask = None# partition windowsx_windows = window_partition(shifted_x, self.window_size)  # nw*b, window_size, window_size, cx_windows = x_windows.view(-1, self.window_size * self.window_size, c)  # nw*b, window_size*window_size, c# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window sizeattn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask)# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)shifted_x = window_reverse(attn_windows, self.window_size, h, w)  # b h' w' c# reverse cyclic shiftif self.shift_size > 0:attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:attn_x = shifted_xattn_x = attn_x.view(b, h * w, c)# FFNx = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scalex = x + self.drop_path(self.mlp(self.norm2(x)))return xclass PatchMerging(nn.Module):r""" Patch Merging Layer.Args:input_resolution (tuple[int]): Resolution of input feature.dim (int): Number of input channels.norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):super().__init__()self.input_resolution = input_resolutionself.dim = dimself.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)self.norm = norm_layer(4 * dim)def forward(self, x):"""x: b, h*w, c"""h, w = self.input_resolutionb, seq_len, c = x.shapeassert seq_len == h * w, 'input feature has wrong size'assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.'x = x.view(b, h, w, c)x0 = x[:, 0::2, 0::2, :]  # b h/2 w/2 cx1 = x[:, 1::2, 0::2, :]  # b h/2 w/2 cx2 = x[:, 0::2, 1::2, :]  # b h/2 w/2 cx3 = x[:, 1::2, 1::2, :]  # b h/2 w/2 cx = torch.cat([x0, x1, x2, x3], -1)  # b h/2 w/2 4*cx = x.view(b, -1, 4 * c)  # b h/2*w/2 4*cx = self.norm(x)x = self.reduction(x)return xclass OCAB(nn.Module):# overlapping cross-attention blockdef __init__(self, dim,input_resolution,window_size,overlap_ratio,num_heads,qkv_bias=True,qk_scale=None,mlp_ratio=2,norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.window_size = window_sizeself.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim**-0.5self.overlap_win_size = int(window_size * overlap_ratio) + window_sizeself.norm1 = norm_layer(dim)self.qkv = nn.Linear(dim, dim * 3,  bias=qkv_bias)self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), stride=window_size, padding=(self.overlap_win_size-window_size)//2)# define a parameter table of relative position biasself.relative_position_bias_table = nn.Parameter(torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nHtrunc_normal_(self.relative_position_bias_table, std=.02)self.softmax = nn.Softmax(dim=-1)self.proj = nn.Linear(dim,dim)self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU)def forward(self, x, x_size, rpi):h, w = x_sizeb, _, c = x.shapeshortcut = xx = self.norm1(x)x = x.view(b, h, w, c)qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2) # 3, b, c, h, wq = qkv[0].permute(0, 2, 3, 1) # b, h, w, ckv = torch.cat((qkv[1], qkv[2]), dim=1) # b, 2*c, h, w# partition windowsq_windows = window_partition(q, self.window_size)  # nw*b, window_size, window_size, cq_windows = q_windows.view(-1, self.window_size * self.window_size, c)  # nw*b, window_size*window_size, ckv_windows = self.unfold(kv) # b, c*w*w, nwkv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch', nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous() # 2, nw*b, ow*ow, ck_windows, v_windows = kv_windows[0], kv_windows[1] # nw*b, ow*ow, cb_, nq, _ = q_windows.shape_, n, _ = k_windows.shaped = self.dim // self.num_headsq = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, nq, dk = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, n, dv = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, n, dq = q * self.scaleattn = (q @ k.transpose(-2, -1))relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1)  # ws*ws, wse*wse, nHrelative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, ws*ws, wse*wseattn = attn + relative_position_bias.unsqueeze(0)attn = self.softmax(attn)attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim)# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim)x = window_reverse(attn_windows, self.window_size, h, w)  # b h w cx = x.view(b, h * w, self.dim)x = self.proj(x) + shortcutx = x + self.mlp(self.norm2(x))return xclass AttenBlocks(nn.Module):""" A series of attention blocks for one RHAG.Args:dim (int): Number of input channels.input_resolution (tuple[int]): Input resolution.depth (int): Number of blocks.num_heads (int): Number of attention heads.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.drop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False."""def __init__(self,dim,input_resolution,depth,num_heads,window_size,compress_ratio,squeeze_factor,conv_scale,overlap_ratio,mlp_ratio=4.,qkv_bias=True,qk_scale=None,drop=0.,attn_drop=0.,drop_path=0.,norm_layer=nn.LayerNorm,downsample=None,use_checkpoint=False):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.depth = depthself.use_checkpoint = use_checkpoint# build blocksself.blocks = nn.ModuleList([HAB(dim=dim,input_resolution=input_resolution,num_heads=num_heads,window_size=window_size,shift_size=0 if (i % 2 == 0) else window_size // 2,compress_ratio=compress_ratio,squeeze_factor=squeeze_factor,conv_scale=conv_scale,mlp_ratio=mlp_ratio,qkv_bias=qkv_bias,qk_scale=qk_scale,drop=drop,attn_drop=attn_drop,drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,norm_layer=norm_layer) for i in range(depth)])# OCABself.overlap_attn = OCAB(dim=dim,input_resolution=input_resolution,window_size=window_size,overlap_ratio=overlap_ratio,num_heads=num_heads,qkv_bias=qkv_bias,qk_scale=qk_scale,mlp_ratio=mlp_ratio,norm_layer=norm_layer)# patch merging layerif downsample is not None:self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)else:self.downsample = Nonedef forward(self, x, x_size, params):for blk in self.blocks:x = blk(x, x_size, params['rpi_sa'], params['attn_mask'])x = self.overlap_attn(x, x_size, params['rpi_oca'])if self.downsample is not None:x = self.downsample(x)return xclass RHAG(nn.Module):"""Residual Hybrid Attention Group (RHAG).Args:dim (int): Number of input channels.input_resolution (tuple[int]): Input resolution.depth (int): Number of blocks.num_heads (int): Number of attention heads.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.drop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.img_size: Input image size.patch_size: Patch size.resi_connection: The convolutional block before residual connection."""def __init__(self,dim,input_resolution,depth,num_heads,window_size,compress_ratio,squeeze_factor,conv_scale,overlap_ratio,mlp_ratio=4.,qkv_bias=True,qk_scale=None,drop=0.,attn_drop=0.,drop_path=0.,norm_layer=nn.LayerNorm,downsample=None,use_checkpoint=False,img_size=224,patch_size=4,resi_connection='1conv'):super(RHAG, self).__init__()self.dim = dimself.input_resolution = input_resolutionself.residual_group = AttenBlocks(dim=dim,input_resolution=input_resolution,depth=depth,num_heads=num_heads,window_size=window_size,compress_ratio=compress_ratio,squeeze_factor=squeeze_factor,conv_scale=conv_scale,overlap_ratio=overlap_ratio,mlp_ratio=mlp_ratio,qkv_bias=qkv_bias,qk_scale=qk_scale,drop=drop,attn_drop=attn_drop,drop_path=drop_path,norm_layer=norm_layer,downsample=downsample,use_checkpoint=use_checkpoint)if resi_connection == '1conv':self.conv = nn.Conv2d(dim, dim, 3, 1, 1)elif resi_connection == 'identity':self.conv = nn.Identity()self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)self.patch_unembed = PatchUnEmbed(img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)def forward(self, x, x_size, params):return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + xclass PatchEmbed(nn.Module):r""" Image to Patch EmbeddingArgs:img_size (int): Image size.  Default: 224.patch_size (int): Patch token size. Default: 4.in_chans (int): Number of input image channels. Default: 3.embed_dim (int): Number of linear projection output channels. Default: 96.norm_layer (nn.Module, optional): Normalization layer. Default: None"""def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):super().__init__()img_size = to_2tuple(img_size)patch_size = to_2tuple(patch_size)patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]self.img_size = img_sizeself.patch_size = patch_sizeself.patches_resolution = patches_resolutionself.num_patches = patches_resolution[0] * patches_resolution[1]self.in_chans = in_chansself.embed_dim = embed_dimif norm_layer is not None:self.norm = norm_layer(embed_dim)else:self.norm = Nonedef forward(self, x):x = x.flatten(2).transpose(1, 2)  # b Ph*Pw cif self.norm is not None:x = self.norm(x)return xclass PatchUnEmbed(nn.Module):r""" Image to Patch UnembeddingArgs:img_size (int): Image size.  Default: 224.patch_size (int): Patch token size. Default: 4.in_chans (int): Number of input image channels. Default: 3.embed_dim (int): Number of linear projection output channels. Default: 96.norm_layer (nn.Module, optional): Normalization layer. Default: None"""def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):super().__init__()img_size = to_2tuple(img_size)patch_size = to_2tuple(patch_size)patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]self.img_size = img_sizeself.patch_size = patch_sizeself.patches_resolution = patches_resolutionself.num_patches = patches_resolution[0] * patches_resolution[1]self.in_chans = in_chansself.embed_dim = embed_dimdef forward(self, x, x_size):x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1])  # b Ph*Pw creturn xclass Upsample(nn.Sequential):"""Upsample module.Args:scale (int): Scale factor. Supported scales: 2^n and 3.num_feat (int): Channel number of intermediate features."""def __init__(self, scale, num_feat):m = []if (scale & (scale - 1)) == 0:  # scale = 2^nfor _ in range(int(math.log(scale, 2))):m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))m.append(nn.PixelShuffle(2))elif scale == 3:m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))m.append(nn.PixelShuffle(3))else:raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')super(Upsample, self).__init__(*m)@ARCH_REGISTRY.register()
class HAT(nn.Module):r""" Hybrid Attention TransformerA PyTorch implementation of : `Activating More Pixels in Image Super-Resolution Transformer`.Some codes are based on SwinIR.Args:img_size (int | tuple(int)): Input image size. Default 64patch_size (int | tuple(int)): Patch size. Default: 1in_chans (int): Number of input image channels. Default: 3embed_dim (int): Patch embedding dimension. Default: 96depths (tuple(int)): Depth of each Swin Transformer layer.num_heads (tuple(int)): Number of attention heads in different layers.window_size (int): Window size. Default: 7mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: Nonedrop_rate (float): Dropout rate. Default: 0attn_drop_rate (float): Attention dropout rate. Default: 0drop_path_rate (float): Stochastic depth rate. Default: 0.1norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.ape (bool): If True, add absolute position embedding to the patch embedding. Default: Falsepatch_norm (bool): If True, add normalization after patch embedding. Default: Trueuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: Falseupscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reductionimg_range: Image range. 1. or 255.upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/Noneresi_connection: The convolutional block before residual connection. '1conv'/'3conv'"""def __init__(self,in_chans=3,img_size=64,patch_size=1,embed_dim=96,depths=(6, 6, 6, 6),num_heads=(6, 6, 6, 6),window_size=7,compress_ratio=3,squeeze_factor=30,conv_scale=0.01,overlap_ratio=0.5,mlp_ratio=4.,qkv_bias=True,qk_scale=None,drop_rate=0.,attn_drop_rate=0.,drop_path_rate=0.1,norm_layer=nn.LayerNorm,ape=False,patch_norm=True,use_checkpoint=False,upscale=2,img_range=1.,upsampler='',resi_connection='1conv',**kwargs):super(HAT, self).__init__()self.window_size = window_sizeself.shift_size = window_size // 2self.overlap_ratio = overlap_rationum_in_ch = in_chansnum_out_ch = in_chansnum_feat = 64self.img_range = img_rangeif in_chans == 3:rgb_mean = (0.4488, 0.4371, 0.4040)self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)else:self.mean = torch.zeros(1, 1, 1, 1)self.upscale = upscaleself.upsampler = upsampler# relative position indexrelative_position_index_SA = self.calculate_rpi_sa()relative_position_index_OCA = self.calculate_rpi_oca()self.register_buffer('relative_position_index_SA', relative_position_index_SA)self.register_buffer('relative_position_index_OCA', relative_position_index_OCA)# ------------------------- 1, shallow feature extraction ------------------------- #self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)# ------------------------- 2, deep feature extraction ------------------------- #self.num_layers = len(depths)self.embed_dim = embed_dimself.ape = apeself.patch_norm = patch_normself.num_features = embed_dimself.mlp_ratio = mlp_ratio# split image into non-overlapping patchesself.patch_embed = PatchEmbed(img_size=img_size,patch_size=patch_size,in_chans=embed_dim,embed_dim=embed_dim,norm_layer=norm_layer if self.patch_norm else None)num_patches = self.patch_embed.num_patchespatches_resolution = self.patch_embed.patches_resolutionself.patches_resolution = patches_resolution# merge non-overlapping patches into imageself.patch_unembed = PatchUnEmbed(img_size=img_size,patch_size=patch_size,in_chans=embed_dim,embed_dim=embed_dim,norm_layer=norm_layer if self.patch_norm else None)# absolute position embeddingif self.ape:self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))trunc_normal_(self.absolute_pos_embed, std=.02)self.pos_drop = nn.Dropout(p=drop_rate)# stochastic depthdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule# build Residual Hybrid Attention Groups (RHAG)self.layers = nn.ModuleList()for i_layer in range(self.num_layers):layer = RHAG(dim=embed_dim,input_resolution=(patches_resolution[0], patches_resolution[1]),depth=depths[i_layer],num_heads=num_heads[i_layer],window_size=window_size,compress_ratio=compress_ratio,squeeze_factor=squeeze_factor,conv_scale=conv_scale,overlap_ratio=overlap_ratio,mlp_ratio=self.mlp_ratio,qkv_bias=qkv_bias,qk_scale=qk_scale,drop=drop_rate,attn_drop=attn_drop_rate,drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],  # no impact on SR resultsnorm_layer=norm_layer,downsample=None,use_checkpoint=use_checkpoint,img_size=img_size,patch_size=patch_size,resi_connection=resi_connection)self.layers.append(layer)self.norm = norm_layer(self.num_features)# build the last conv layer in deep feature extractionif resi_connection == '1conv':self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)elif resi_connection == 'identity':self.conv_after_body = nn.Identity()# ------------------------- 3, high quality image reconstruction ------------------------- #if self.upsampler == 'pixelshuffle':# for classical SRself.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))self.upsample = Upsample(upscale, num_feat)self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)def calculate_rpi_sa(self):# calculate relative position index for SAcoords_h = torch.arange(self.window_size)coords_w = torch.arange(self.window_size)coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Wwcoords_flatten = torch.flatten(coords, 1)  # 2, Wh*Wwrelative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Wwrelative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2relative_coords[:, :, 0] += self.window_size - 1  # shift to start from 0relative_coords[:, :, 1] += self.window_size - 1relative_coords[:, :, 0] *= 2 * self.window_size - 1relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Wwreturn relative_position_indexdef calculate_rpi_oca(self):# calculate relative position index for OCAwindow_size_ori = self.window_sizewindow_size_ext = self.window_size + int(self.overlap_ratio * self.window_size)coords_h = torch.arange(window_size_ori)coords_w = torch.arange(window_size_ori)coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, ws, wscoords_ori_flatten = torch.flatten(coords_ori, 1)  # 2, ws*wscoords_h = torch.arange(window_size_ext)coords_w = torch.arange(window_size_ext)coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, wse, wsecoords_ext_flatten = torch.flatten(coords_ext, 1)  # 2, wse*wserelative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None]   # 2, ws*ws, wse*wserelative_coords = relative_coords.permute(1, 2, 0).contiguous()  # ws*ws, wse*wse, 2relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1  # shift to start from 0relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1relative_position_index = relative_coords.sum(-1)return relative_position_indexdef calculate_mask(self, x_size):# calculate attention mask for SW-MSAh, w = x_sizeimg_mask = torch.zeros((1, h, w, 1))  # 1 h w 1h_slices = (slice(0, -self.window_size), slice(-self.window_size,-self.shift_size), slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size), slice(-self.window_size,-self.shift_size), slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1mask_windows = window_partition(img_mask, self.window_size)  # nw, window_size, window_size, 1mask_windows = mask_windows.view(-1, self.window_size * self.window_size)attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))return attn_mask@torch.jit.ignoredef no_weight_decay(self):return {'absolute_pos_embed'}@torch.jit.ignoredef no_weight_decay_keywords(self):return {'relative_position_bias_table'}def forward_features(self, x):x_size = (x.shape[2], x.shape[3])# Calculate attention mask and relative position index in advance to speed up inference.# The original code is very time-consuming for large window size.attn_mask = self.calculate_mask(x_size).to(x.device)params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA}x = self.patch_embed(x)if self.ape:x = x + self.absolute_pos_embedx = self.pos_drop(x)for layer in self.layers:x = layer(x, x_size, params)x = self.norm(x)  # b seq_len cx = self.patch_unembed(x, x_size)return xdef forward(self, x):self.mean = self.mean.type_as(x)x = (x - self.mean) * self.img_rangeif self.upsampler == 'pixelshuffle':# for classical SRx = self.conv_first(x)x = self.conv_after_body(self.forward_features(x)) + xx = self.conv_before_upsample(x)x = self.conv_last(self.upsample(x))x = x / self.img_range + self.meanreturn x

二、添加HAT注意力机制

2.1STEP1

首先找到ultralytics/nn文件路径下新建一个Add-module的python文件包【这里注意一定是python文件包,新建后会自动生成_init_.py】,如果已经跟着我的教程建立过一次了可以省略此步骤,随后新建一个HAT.py文件并将上文中提到的注意力机制的代码全部粘贴到此文件中,如下图所示在这里插入图片描述

2.2STEP2

在STEP1中新建的_init_.py文件中导入增加改进模块的代码包如下图所示在这里插入图片描述

2.3STEP3

找到ultralytics/nn文件夹中的task.py文件,在其中按照下图添加在这里插入图片描述

2.4STEP4

定位到ultralytics/nn文件夹中的task.py文件中的def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)函数添加如图代码,【如果不好定位可以直接ctrl+f搜索定位】

在这里插入图片描述

三、yaml文件与运行

3.1yaml文件

以下是添加HAT注意力机制在Backbone中的yaml文件,大家可以注释自行调节,效果以自己的数据集结果为准

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, HAT,  []]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 11], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

以上添加位置仅供参考,具体添加位置以及模块效果以自己的数据集结果为准

3.2运行成功截图

在这里插入图片描述

OK 以上就是添加HAT注意力机制的全部过程了,后续将持续更新尽情期待

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1554726.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C++系列-二叉搜索树

&#x1f308;个人主页&#xff1a;羽晨同学 &#x1f4ab;个人格言:“成为自己未来的主人~” 二叉搜索树 二叉搜索树又称二叉排序树&#xff0c;它或者是一颗空树&#xff0c;或者是具有以下性质的树 若它的左子树不为空&#xff0c;则左子树上的所有节点的值都小于根节点…

【ubuntu】apt是什么

目录 1.apt简介 2.常用apt指令 2.1安装 2.2更新列表 2.3更新已经安装的软件包 2.4搜索软件包 2.5显示软件包信息 2.6移除软件包 2.7清理无用的安装包 2.8清理无用的依赖项 3.apt和apt-get 3.1区别 3.2 总结 1.apt简介 apt的全称是advanced package …

7c结构体

文章目录 一、结构体的设计二、结构体变量的初始化2.1结构体在内存表示&#xff1b;**2.2**结构体类型声明和 结构体变量的定义和初始化只声明结构体类型声明类型的同时定义变量p1用已有结构体类型定义结构体变量p2*定义变量的同时赋初值。*匿名声明结构体类型 2.3 结构体嵌套及…

Ubuntu安装Hadoop3.4

1、创建Hadoop用户 sudo adduser hadoop 将Hadoop加进sudo用户组,赋予更高权限: sudo usermod -G sudo hadoop 3、安装JDK(略) 查看JDK安装路径:which java 和 ls -al 3、配置SSH免密登录 在Hadoop分布式集群环境中,各个机器之间的通信通常需要使用SSH的方式进行连…

MIT6.824--入门介绍

分布式系统的定义 分布式系统是指将多部各自拥有内存与时钟等硬件设备的独立的计算机系统以网络汇集起来&#xff0c;彼此之间仅仅通过网络消息传递进行通信和协调&#xff0c;共同对外提供服务&#xff0c;但对于系统的用户来说&#xff0c;就像是一台计算机在提供服务一样。…

Python+Matplotlib可视化初等函数示例

import numpy as np import matplotlib.pyplot as pltplt.rcParams[font.sans-serif] [SimHei] plt.rcParams[axes.unicode_minus] Falsefig, axs plt.subplots(2, 3, figsize(15, 10))# 1. 幂函数 x np.linspace(-2, 2, 200) axs[0, 0].plot(x, x**2, labely x^2) axs[0,…

Python-初识Python

前言&#xff1a;在这篇博客当中&#xff0c;我们将步入Python知识的殿堂&#xff0c;Python以其简单、易学、开发效率高在近些年的发展可谓是迅猛&#xff0c;在许多领域都可以见到它的场景&#xff0c;例如&#xff1a;人工智能/机器学习、大数据开发、后端开发等都会用到。 …

绝对值得收藏!分享7款ai写作论文免费一键生成网站

在当前的学术研究和写作过程中&#xff0c;AI写作工具已经成为了许多研究者和学生的重要助手。这些工具不仅能够提高写作效率&#xff0c;还能帮助生成高质量的论文内容。以下是七款免费的AI写作论文生成器&#xff0c;其中特别推荐千笔-AIPassPaper。 1.千笔-AIPassPaper 千…

第十二届蓝桥杯嵌入式省赛程序设计题解析(基于HAL库)(第二套)

一.题目分析 &#xff08;1&#xff09;.题目 &#xff08;2&#xff09;.题目分析 1.按键功能分析 a.B1界面切换 b.B2每次按下R加2 c.B3每次按下R减2 d.LED控制按键 2.信号输出功能分析 a.PA7信号输出-----信号的输出就需要使用到输入捕获和输出比较功能 b.输出信号的…

融媒体服务中PBO进行多重采样抗锯齿(MSAA)

如果不理解pbo 那先去了解概念&#xff0c;在此不再解释&#xff0c;这是我为了做融合服务器viewpointserver做的一部分工作&#xff0c;融合服务器的功能是将三维和流媒体&#xff0c;AI融合在一起&#xff0c;viewpointserver会直接读取三维工程的文件&#xff0c;同时融合rt…

BUCK的工作模式:CCM BCM DCM

连续导通模式CCM CCM工作状态 一个开关周期内&#xff0c;电感内的电流始终大于0&#xff0c;电感在DCDC整个工作周期中一直处于充电放电状态&#xff1b;即使DCDC的功率开关管断开时&#xff08;Toff&#xff09;&#xff0c;电感中一直有电流流过&#xff1b; 功率开关管闭合…

分布式学习02-CAP理论

文章目录 CAP三指标一致性可用性分区容错性 CAP不可能三角P存在的必要性CP理论AP理论 CAP理论对分布式系统的特性做了高度抽象&#xff0c;将其抽象为一致性、可用性、分区容错性。 并对特征间的冲突做了总结&#xff1a;CAP不可能三角。 CAP三指标 一致性&#xff08;Consis…

PostgreSQL Docker Error – 5432: 地址已被占用

PostgreSQL Docker Error – 5432: 地址已被占用 今天在学习【Spring Boot React】价值79.9美元&#xff0c;全栈开发&#xff0c;搭建个人网站、做毕业设计、试试这套课程第17~21节视频的时候&#xff0c;发现运行docker run --name demo-postgres -e POSTGRES_PASSWORDpass…

循环生成对抗网络——CycleGAN

系列文章目录 GAN生成对抗网络介绍 目录 系列文章目录 前言 二、应用 三、解决的问题 1、图像转译任务 2、原理 四、调试好的源码 前言 CycleGAN&#xff08;循环生成对抗网络&#xff09;是一种用于图像到图像的转换的深度学习模型&#xff0c;由Jun-Yan Zhu等人在20…

Redis数据库与GO(一):安装,string,hash

安装包地址&#xff1a;https://github.com/tporadowski/redis/releases 建议下载zip版本&#xff0c;解压即可使用。解压后&#xff0c;依次打开目录下的redis-server.exe和redis-cli.exe&#xff0c;redis-cli.exe用于输入指令。 一、基本结构 如图&#xff0c;redis对外有个…

【ubuntu】ubuntu20.04安装chrome浏览器

1.下载 https://download.csdn.net/download/qq_35975447/89842972 https://www.google.cn/chrome/ 2.安装 sudo dpkg -i google-chrome-stable_current_amd64.deb 3.使用

【AI学习】Mamba学习(一):总体架构

论文&#xff1a;《Mamba: Linear-Time Sequence Modeling with Selective State Spaces》 作者1&#xff1a;Albert Gu&#xff0c;现在是CMU(卡内基梅隆大学)助理教授&#xff0c;曾在DeepMind 工作。多年来一直推动SSM架构发展。 作者2&#xff1a;Tri Dao&#xff0c;现为…

文件上传之%00截断(00截断)以及pikachu靶场

pikachu的文件上传和upload-lab的文件上传 目录 mime type类型 getimagesize 第12关%00截断&#xff0c; 第13关0x00截断 差不多了&#xff0c;今天先学文件上传白名单&#xff0c;在网上看了资料&#xff0c;差不多看懂了&#xff0c;但是还有几个地方需要实验一下&#…

老年人意外跌倒感知技术

意外跌倒是导致老年人仙游的6大原因之一&#xff0c;尤其多余80岁以上的老年人。跌倒已成为我国 65 岁以上老年人因伤致死的首位原因&#xff08;来源&#xff1a;IT之家&#xff09;。 跌倒最容易发生在两个地方&#xff0c;卫生间和过道。主要可能是卫生间没有安装扶手&…

【案例】平面云

教程案例视频&#xff1a;Unity Shader Graph - 云教程 开发平台&#xff1a;Unity 2022 开发工具&#xff1a;Unity ShaderGraph   一、效果展示 二、ShaderGraph 路线图 三、案例分析 核心思路&#xff1a;使用 Noise&#xff08;噪声&#xff09;模拟云层状态   3.1 说明…